
L

50

00

Q
«33

Asfm*.

** Uli,

D D C
FEB «8 OQ

I5SXSD U IS
B

APPLIED DATA RESEARCH, INC.

■■—■■■
i T-^W—"

no APPLIED DATA RESEARCH, INC
LAKESIDE OFFICE PARK • WAKEFIELD, MASSACHUSETTS 01880 • (617) 245-9540

FOURTH SEMI-ANNUAL TECHNICAL REPORT
(14 July 1971 - 13 January 1972)

FOR THE PROJECT

COMPILER DESIGN FOR THE ILLIAC IV

VOLUME II

Principal Investigator and Project Leader:

Robert E. Mlllstein

MPA Order Number

Program Code Number

Contractor:

Contract No.:

Effective Date:

Amount:

Phone (617) 245-9540

ARPA 1554

0D30

Applied Data Research, Inc.

DAHC04 70 C 0023

13 January 1970
$916,712.50

Sponsored by

Advanced Research Projects Agency

ARPA Order No. 1554

Approved for public release; distribution unlimited.

• ,

D DC

*

po
APPLIED DATA RESEARCH, INC.
LAKESIDE OFFICE PARK • WAKEFIELD. MASSACHUSETTS 01880 • (617) 245-9540

FOURTH SEMI-ANNUAL TECHNICAL REPORT
(14 July 1971 - 13 January 1^72)

FOR THE PROJECT

COMPILER DESIGN FOR THE ILLIAC IV

VOLUME II

CA-7202-1111

[
t
L

Principal Investigator and Project Leader:
Robert E. Millstein Phone (617) 245-9540

Ü
Approved for public release; distribution unlimited.

L

TABLE OF CONTENTS

VOLUME 11

II.

Control Structures In ILLIAC IV FORTRAN

IVTRAN: A Dialect of FORTRAN For Use On
The ILLIAC IV

1 • Introduction

Elements of IVTRAN
Constants

Variables

Expressions

Statements

Program Units and Programs

Appendix A: Allocation

2.

3.

4.

5.

6.

7.

in. Functional Specification For The
ILLIAC IV Link Editor

29
29

31

38

46

so
60

130

144

158

-

CHAPTER I

CONTROL STRUCTURES IN ILLIAC IV FORTRAN

(

Part of our effort for the design and implementation of the ILLIAC IV

FORTRAN compiler has been the design of an extended FORTRAN, called

IVTRAN, which provides a suitable means of programming the ILLIAC.

The extensions to standard FORTRAN are statement forms for expressing

parallelism and data layout in an array memory. This chapter will describe

these structures, but it is primarily concerned with the rationale which led

to their creation.

The logical starting point is the hardware which makes up an ILLIAC IV

quadrant [1,2]. Let us review the features of the machine and pick out

unconventional parts which might be expected to affect language design.

The computing hardware consists of a control unit (CU) and 64 processing

units (PUs). Each processing unit consists of a processing element (PE)

and a processing element memory (PEM) of 2K 64 bit words. A PE memory

access requires 1 cycle, and a normalized floating point add Instruction

requires S cycles. A cycle requires 62.5 ns., so the basic data rate is

64 bits per 62.5 ns. per processor, or PSxlO bits per second (bps) for a

quadrant of C4 processors. An average execution time of 312.5 ns. per

Instruction per processor produces an instruction rate of 200 (3.1) million

Instructions per second (MIP) per quadrant (processor). All instructions

are Interpreted by the CU, which decodes each instruction and broadcasts,

synchronously, sequences of microinstructions to each PE. That is,

the CU interprets cm instruction and then each PE, simultaneously.

-1-

■■!■ I II

executes that instruction. One operand may be broadcast from the CU.

Other operands are available to the PE from its own PEM or operating

registers. In addition, PEs may be disabled for the execution of any given

(sequence of) instructions. That is, any set of PEs can be (temporarily)

turned off during the course of an instruction stream. Thus, if an add

instruction is broadcast by the CU, a given PE may execute it (on local

data) or ignore it. It is not, however, possible to execute a different

instruction. The first major unconventional feature of ILLIAC design is that

there is exactly one instruction stream for 64 processors which operate

synchronously on local data streams.

The CU is able to perform some integer arithmetic, primarily for loop

control and address calculation, but the major computing power resides in

the PE. The PEs can perform a standard repertoire rf fixed point, floating

point, and logical computations. Certainly the computing capability of

each PE Is conventional and poses no difficulty in language design.

An ILLIAC quadrant has 128K of memory, all of which is accessible, in

conventional fashion, to the CU. Each PE, however, sees only 2K of local

memory. The memory structure is depicted in Figure 1. Instructions which

reference memory generate an effective address between 0 and 2047... This

address is used as a displacement in each PEM. For Instance, an instruction

with effective address 100 would cause the 64 words marked by an asterisk

in Figure 1 to be referenced. Each PE contains a local index register which

■2-

I
I
I en be used to modify the vlrtuel address field of en Instmctlon. Thus.

If the index register of PEO contained 0, the index re,lster of Kl contained

| 1. etc., and the virtual address field contained 100, the 64 words marked

- by a plus in Figure 1 would be referenced. Note, however, that a PE can

only reference words within its PEM. The ILUAC quadrant then, contain.

| powerful processors which have conventional access to only 2K of memoty.

A routing instruction is provided to allow data transfers between r£s. The

| fB, are. In effect, connected in a closed circular fashion. The routing

instmctlon transmits a word from each PE to the PE located n positions

distant around the ring. A total of 64 worts are transmitted: PEO sends

a wort to PEn, PE1 sends to PE((n+l)mod64),... and PE63 sends to

PE((n+63)mod64), 0« =63. A, many as 64 of the transfers may be useful,

or as few as 1, depending on data layout. Clearly, the routing Instruction 1,

insufficient to compensate for the small size of the memory directly address-

•ble by each PE. This is the second major unconventional ieature of the

IUIAC IVi a very smalUocally accessable memory wlü, minimal nter-me.iory
connections.

Just as 2K Is a small memory for a 3 .1 MIP processor, 128K is

a small memory for a 200 MIP machine. To compensate for the small

overall memory a 16 million word disk file with a .5 x 109 bps transfer rate

is part of the ILUAC quadrant. This enables a complete memory load to be

accomplished in 16 ms. (iynoring latency) and provides a throughput access

time per word of 128 ns. # or approximately 1/130 PEM speed. This access

■

-3-

i

(

2^ - -. -e« .e memory sl2e constralnts. ^ ^ ^

-ce 2o n.. ls enough ^ for 4 ^ ^^^ ^^^ jene..

^ .. a serlous one. Ihl. ^^^ ^^ ^^^

rrentlonaiiy hi9h ,r'M"r rate' con,,'i8es *• ^— 1LLIAC hardware feature.

These, t.^. are the three ^ ^^ ^^^^

influenced our language design:

• ' •ta»1''^'"'«ion s^ee™ controlling synchrcnou, opereuon
on 64 different data streams.

f . Powerful, fast process« wlth onJy ^^ ^ JocaI ^^^

•nd only llmlted COIlnecüons {vla ^^ ^^^^ to

othei high sreed memory.

• '^«^omyiaeK of program and data prlmarx storage fW a
200 MfP proces.or with a backup sto« oharacterUed by

high transfer rate and Crelauvely) slow access rate.

Note that every one of thes. hardware feaWes concern, data. «u.

-cern is „ucial to the problem of „sing the fUfAC « efficiently, xh.
Ko^m of opt.m.fng fw .e ^ .. by ^ „, _ ^

of .fficien. algoriu,™. end .be generation of efficient code - .. fc larse

-4-

part concentrated on optimization of data organization rather than optimization

of machine code sequences. The ILLIAC will only operate effectively if

data Is laid out properly. Reorganizing data so that an operation can be

performed on 64 items simultaneously Is clearly a more Important goal than

utilizing index registers efficiently in a sequential instruction stream. This

Is not to say that conventional, code-oriented, optimization techniques are

not applicable to the IVTRAN compiler; but, such techniquas are of secondary

importance to the optimization of data organization. In contrast to conven-

tional computers, the optimization problem for the ILLIAC is one of data

layout, not code reorganization.

Let us reexamine the hardware features listed above to see what

conditions they suggest for ILLIAC optimization.

• The first feature — a sing'e instruction stream operating on 64

different data streams — suggests that efficient ILLIAC code will be compiled

from program structures where a single code sequence is executed for many

different sets of data. In the case of FORTRAN, DO loops are clearly such

program structures. In fact, the part of our effort related to the detection

of parallelism in standard FORTRAN is concentrated on DO loops. Ignoring

the question of data dependency, (Obviously, consideratior« of intra- and

inter-loop data dependencies is of paramount importance to the problem of

parallelism detection, but we can ignore it here.) a DO loop can be regarded

as a single instruction stream operating on different data streams only if

-5-

each data stream is represented as a variant of a single syntactic skeleton.

That is, each data stream is a syntactic form that is distinguished by an

index value. In FORTRAN, the only applicable form is the array. Therefore,

the first ILLIAC hardware feature implies that the structuring of arrays

appearing within DO loops will be crucial to efficient machine utilization.

• The second feature — 2K of local memory with limited local

memory-local memory transfer capability — suggests that the crucial data

structures — i.e., arrays — be allocated so that elements cppearing in

parallel data streams be located in different PEs. Then each PE, which is

constrained to directly access only its local memory, will have direct access

to the data required for computation. A secondary implication is that data

be allocated so that memory-memory transfers — accomplished by routing

instructions — move as many "good" data words as possible. That is, a

routing instruction moves 64 words at a time; each word moves n PEs to

the right, end around. If PEi requires a word in PE(2i mod 64), 0si2:63, It

can require 63 routine instructions (ignoring various clever algorithms for

this case) to allocate data in appropriate PEs for use by perhaps only one

instruction. In this example, each routing instruction moved only one "good"

data word. Routing instructions require, on the average, 562.5 ns.; they

can transmit as many as 4096 bits or as few as 64 bits. Thus, the data

transfer rate can vary from as high as 7.3 x 10 bps to as low as .11 x 109

bps. Local memory accesses transfer bits at a rate of 65 x 10 bps, so it

is Important to keep routing instructions at the high end of the scale to

-6-

preserve some semblance of a balance. On fact, this discussion has

Ignored the fact that routing Instructions are register to register operations

and require an initial local memory access. This access pushes the bit

rates into even greater Imbalance.)

So far, we have seen that the first two unconventional ILLIAC hardware

characteristics suggest certain conditions for data layout:

• arrays are crucial data objects.

• arrays should be allocated so that parallel data streams He

In different PEs.

• arrays should be allocated so that routing instructions move

as many "good" data words as possible.

The third hardware feature basically concerns global data layout. This

problem is not unique to the ILLIAC, and, further, is extremely sensitive

to operating environment as well as machine characteristics. Hence, we

will not treat it further in this chapter. Let u» now examine a data allocation

method which satisfies the above local conditions. Once we hove exam-

ined this method it will be clearer how to provide control and allocation

structures that let a programmer describe code which meets the local data

layout restrictions Imposed by the ILLIAC hardware.

-7-

'

E

Let us define a cross section, of an array as the subarray obtained by

holding some Ibices fixed and allowing all other indices to range through

all permissible values. We recognize a special type of cross section,

called a sjlce. which is the vector obtained by fixing n-1 indices of an

n-dimensional array. These data objects are the obvious generalizations

of the array element, the subarray obtained by fixing all indices. The Intent

of these deflnltlcns is that a cross section of an array represents exactly

a cross section of parallel data streams. A natural requirement, therefore,

is that an array be stored so that any given cross section be accessible In

Parallel - i.e.. lies across the PEs. Of course, cross sections with more

than 64 elements can only be accessed 64 elements at a time.

A natural operation to perform on a cross section is to combine it.

element by element, with another cross section of the same size. It Is not

feasible to require that every array cross section exactly line up (in the

PEMs) with every other cross section of Identical size. However, we can

require that cross sections be separated by at most a single uniform route.

By "single unlfonr route" we mean that a single routing instruction will align

the elements of one cross section with the elements of any other cross section.

Again, cross sections of more than 64 elements can only be aligned 64

elements at a time.

-8-

As Implied by the two previous requirements, arrays with dimensions

greater than 64 must be allocatable by any acceptable storage method. In

addition. It Is desirable that cross sections and Individual elements be

accessible via simple and general formulae, with as much calculation as

possible done either at compile time or else simultaneously In the PEs at

run time.

The storage schema we devised to satisfy these requirements Is called

physical skewing [3,4] . For simplicity, we will describe It In terms of

slices. (In fact, the method satlsflos generalizations of the above require-

ments for slices. In addition, slices are expected to be by far the most

used cross sections.) Consider Figure 2. This depicts the storage of a

3 x 7 x 10 array, each element denoted by Its subscript. As In Figure 1.

we view the ILLIAC memory as 2-dlmenslonal, wfth the PEs running horizon-

tally and the Individual PEMs running vertically. Thus, the element HI Is

In word 0 of PEO, etc. The reason for the name 'physical skewing" is

obvious. A slice along each of the three possible axes is marked in the

figure. The slice along the first dimension Is a 3-vector whose elements

are enclosed by diamonds. The 7-vector along the second dimension has

its elements enclosed by rectangles. Finally, the 10-vector along the third

dimension has its elements in circles.

Note first that for each slice each element is in a different PE than

any other element of that slice. Hence, each slice can be accessed in

parallel. Second, there is a horizontal spacing of 1 between elements of

-9-

-•■»Wl-W-

a slice. Given any element, the next element is in the PE immediately to

the right; so, an n-element slice occupies n consecutive PEs. Hence, a

single routing command can move any slice into any other n consecutive

PEs so as to be aligned with any other n-element .slice. For example, a

single route of -4 would move the vector 151, 152,... into PEs 0 through 9

so that corresponding elements of that vector and the vector 111, 112, ...

would be in the same PE. Finally, given the first element of a slice,

succeeding elements can be located by moving 1 PE to the right and then

down 7, 1, or 0 memory locations depending on whether the slice is along

the first, second, or third dimensions. (7 Is merely the size of the second

dimension, which determines the height of each 2-dimensional subanay.)

Hence, accessing slices can be done by a simple uniform procedure.

This method meets three of the four requirements, but the example had

no dimensions greater than 64. Let us now see how the physical skewing

method can be adapted to meet the fourth requirement. Suppose that we had

to store this 3 x 7 x 10 array in a 4-PE machine. We can sUce the array

vertically into 4-element wide strips, as Indicated in the figure, and stack

the strips on top of each other so that, for instance, the element 115 would

be in PEO, word 21; the element 119 in PEO, word 42, and so on. Elements

of a slice can still be accessed in parallel, but only 4 elements at a time

of course. The routing remains the same since routing left from PEO wraps

-10-

around to PE3 and conversely for routing right from PE3. The access

formulae are slightly more complicated. When the succeeding element in

a slice Is 1 PE to the right of PE3, then we wrap around to PEO to locate

the correct PE. and we must also add 21, the product of the sizes of the

first and second dimensions to whatever number of locations down we

would prevlou-ly have used. For example, the first 4 elements of the slice

214, 224, ... are located as before. To locate 254 we rotate back to PEO,

go down 21 locations because of the wrap around and then go down 1 more

location, because this Is a slice along the second axis. With only a

moderate Increase In the complexity of the access formulae, this method

does Indeed satisfy the fourth requirement.

Unfortunately, It also wastes an Immenso amount of space, so we

devised a method of packing the array. Consider Figure 3. This represents

the same array as before, with the same slices marked, packed into the

memory of a 4-PE machine. We obtained the packing by overlapping the

first and fourth, and the second and fifth 4-element wide strips. Parallel

access and routing remain as before. The acctfss formulae are again slightly

complicated. Just as locating the proper PE is done modulo 4, now locating

the memory location is done modulo 63, the number of rows of memory that

the matrix occupies. For example. the first 4 elements of the slice 151.152,...

are located as before by moving 1 PE to the right and 0 elements down. The

next 4 elements are located by wrapping around to PEO and counting down 21.

The remaining 2 elements are located by again wrapping around to PEO and

•11-

•

again counting down 21, which, modulo 63, brings us around to the top of

the storage area. This method still leaves some wasted space, but the

amount wasted Is not Impossibly largo. Further, that space can be used

for the storage of various complle-tlme-calculable constants, such as the

product of dimension sizes, wh<ch are required by the access formulae, as

well as for the storage of other constants required by the program.

Now this storage scheme

• treats arrays as the crucial data object

• allocates parallel data streams Into different PEs

• maximizes economical routing

so It seems to satisfy the data layout conditions Imposed by the ILLIAC

hardware. We can therefore. Introduce a statement to express parallel

computations since we have an acceptable way of storing data for such

computations. In addition to ordinary DO loops (for expressing sequential

calculations), IVTRAN has the DO FOR ALL loop.

A DO FOR ALL statement Is of the form:

DO k FOR ALL &,,...,1)/8 i n

-12-

where:

1) k Is the statement label of an executable statement. This statement,

called the terminal statement of the associated DO FOR ALL, must

physically follow and be in the same program unit as the DO FOR ALL

statement.

2) Each i. is an integer scalar variable name called a control index.

(ij,.. .in) is called a control multi-index.

3) s is an n-dimensional logical array expression with an extent d.

Associated with the DO FOR ALL is a range defined to be those executable

statements following the DO FOR ALL from and Including the first statement

following the DO FOR ALL to and including the terminal statement. We also

define the extended range by replacing (by body substitution) function and

subroutine calls by the referenced subprograms. This substitution Is repeated

iteratively until all such calls have been replaced.

A DO FOR ALL statement is used to specify that certain assignment

statements within the extended range are to be executed for a set of values

in parallel. This set of values, called the index set, is defined to be the

set of n-tuples of integers (ij,... ,ln) such that sdj,... ,ln) is true and

.

-13-

The extended range of a DO FOR ALL may not contain another

DO FOR ALL or any array expressions. The control Indices may not be

used In any statement within the extended range of the DO FOR ALL loop,

except as outlined below. Otherwise, any statement permitted elsewhere

In the procedure part of the program Is permitted and has Its usual interpreta-

tion.

Within a DO FOR ALL extended range, the control Indices may appear

only In DO FOR ALL assignment statements. A DO FOR ALL assignment

statement Is one of the following forms:

pee

or

IF(f)p=e

where:

1) p is an array element reference with subscripts of the form:

I

or I+C

or I-C

where I is one of the 1. and C is an expression independent of the 1..

Further, if 1. and 1^ both appear as subscripts, then j/k - i.e., the

same control index cannot appear in more than one coordinate position.

.

-14-

I
« . «d f are each expreeeion, which mey or mey „o. depend upon

^ ^ • mthiD ' and f ■ '"y ""Y references ere eltter of the
form 1) ebove or are Independent of the 1 .

•fcecuuon of e DO P0R AU aasten, atetement ceuae, pereile. es.i9„.

«ent of the expreaafon e to the .rrey e.en.ent reference p for eU veiue.

1 V ln'"e index set. The companion of the ex^eaaiona e end f

^ea uae of values of p in effect inunediate* hafore execution of the

-.ement. U the aecond forn. of the stetement is used, aa.i8nn,ent is „ede
only for those values of li . i \ tn t^ , ^ ul'' • • 'V ln ^e Index set for which
'^♦•••»y-.TRUEe

For exempie. iet A«.,.« he the errey shown in Fi,ure 2. The foiiowi«,

»cop sets eech ciement of A to it. abaolute velue end then repiaces that
value by Its square root.

^lFORALLaj,K)/[l...3].c.[l...7].c<[l!.>!l0]

IF(A(IJ,K).LT.0.0) A(IJfK)- .A(IJ#K)

1 Aaj/K)=SQRT(A(IJ,K))

• Ce Is an abbreviation of .CROSS., the Cartesian

The built In square root function

In each PE.

cross product operator,

computes 64 values simultaneously, one

-IS-

I -

We now note that It is possible, within the data storage scheme, to

allocate a given array in several different ways. Consider the previous

example; the array was stored so th.t vectors along the third dimension

(elements enclosed by a circle in Figures 2 and 3) lie on horizontal lines.

That is, the same effective address, computable at compile time and broad-

cast from the CU, locates each element of the slice. No PE indexing is

required as it is for slices along the first and second dimensions. This '

allocation is most efficient if slices along the third dimension are accessed

most often. However, if slices along either the first or second dimensions

are most often accessed, then the array should be rotated so that, for

example, slices along the second dimension lie on horizontal lines (see

Figure 4). Thus, for maximum efficiency, it is necessary that the program-

mer specify the precise allocation that he desires. Furthermore, physical

skewing allow, parallel access to an^ slice along ^ dimension. If only

slices along a single dimension need be accessed in parallel, then a

simpler storage scheme Is more efficient. This scheme is the normal "block"

airangement for arrays, with the parallel dimension stored row-wise. This

scheme can be Incorporated within physical skewing to permit highly

efficient parallel access along some dimension, no parallel access along

the "perpendicular" dimension and physically skewed parallel access along

yet another dimension. Figure 5 depicts a 3 x 7 x 10 array stored this way.

In any event, many variations are possible in the allocation of any given

eiray. Hence, we require a statement form that allows a programmer to

precisely specify the desired allocation. The allocation declaration

provides this form.

-16-

I
I

The occuirence of an array variable in a DIMENSION, Type, or

COMMON statement may be accompanied by an (optional) allocation

declaration. Each variable may have no more than one such declaration

In any program piece. The syntax of an allocation is

allocation :: -

[multi-index {,multi-index)*]

multi-index :: =

(index{,index)^) |

aligned (indexf,index)* I o ■
preferred (indexf,index)*

index :: ■ integer constant

aligned :: = #

preferred :: « $

An ailocation is used to describe a desired storage map. Each index

denotes a subscript position (e.g., index 2 denotes the second subscript

position of an array A(IJ,K)). The order of indices within a multi-index

is significant, but the order of multi-indices '• itnin an allocation is not.

-17-
r ■

If an index is preferred, then an increment of 1 m the index vaiue wiil

increase the PE number by 1, but the row number will not change. If an

index is aligned, then an increment of 1 in the index value will not change

the PE number, but the row number will change. We will further describe

the allocation declaration by means of a series of examples. Consider a

3 x 5 array A(I,j). The allocation for storing this array physically skewed

1» C (1). (2)] . which is also the default allocation (see Figure 6a). This

allocation can also be written [(1).$(2)] . indicating that subscript position

2 is the preferred index. This allocation permits parallel access along

either coordinate, but access to the secono coordinate is less expensive.

It might be used to store an array A(IJ) which often appears in DO FORALL J

loops and occasionally appears in DO FORALL I loops. The opposite case

- many DO FORALL I loops and few DO FORALL J - suggests the transpose

•torage map. obtained by the allocation [$(1), (2)] (Figure 6b). If only slices

along the second coordinate need be accessed in parallel, the aligned

storage map (Figure 6c) can be obtained by the allocation [#(1).(2)] . If

the array appears in the body of a DO FORALL IJ loop, then the most desir-

able storage map permits access to IJ cross-sections (Figure 6d). The

allocation [(1.2)] produces this storage map. m general, multi-indices

are used to obtain parallel access to cross-sections. On the previous

examples, the woss-sections were 1-dimensional slices, so the multi-

indices consisted of only 1 index.) In all cases, slicing into 64 element

wide strips is done automatically and is transparent to the user. As a final

example, the allocation [(1).$ (2).(3)] will produce the storage map in Figure 4.

-18-
*

.

Now an allocation, unfortunately, is not necessarily of the same

efficiency throughout an entire program. The parallel data streams may

be along one dimension in one loop and along a different dimension in

another loop. It is up to the programmer to decide whether it is more

efficient to change allocations between loops, or to select a compromise

allocation. For this reason it is necessary to allow allocation declarations

to be associated not Just with program pieces but with loops.

A programmer can associate an allocation for an array A with a loop

(or other program part) by the following technique:

• Define a dummy array A' with the desired allocation and the

I same extent as A

• Substitute A* for A in the loop

I • Insert A'=A before the loop

j
The compiler will automatically call a subroutine to transform A into A*.

I This technique requires, of course, that twice/is much space be given for

the storage of A as is strictly necessary (since two different forms of the

array are simultaneously defined). Often, such waste is not allowable.

Further, the original allocation of A may not be needed again. Hence, it

is desirable that e means be provided to reallocate A Into Its original

| storage area. The OVERLAP statement provides such a means.

I
I

I
I
I -19-

The OVERLAP statement Is of the form:

OVERLAP (srs2 sj

where each s is an OVERLAP speclfUr of the form:

(el'e2 *J
and each e Is an OVERLAP element of the form:

(n^nj,...,!^)

and each n Is an anray or scalar variable name.

Either all of the variables In an OVERLAP specifier -nust be In the

•ame COMMON block or none of them may be In COMMON. The order In

which variables appear In OVERUP elements Is arbitrary. The order In which

OVERLAP elements appear in OVERLAP specifiers is arbitrary. The same

variable or array name may appear at most once in an OVERLAP statement.

Each OVERIAP specifier indicates sets of variables (overlap elements)

which the compiler may cause to share storage. Each of the variables in

an OVERLAP element can share storage with any of the variables In any

other OVERUP element in the same OVERUP specifier. Variables declared

in the same OVERIAP element do not share storage with one another.

If, in the previous example, the programmer wishes to conserve space,

then he can use the statement:

OVERLAP ((A),(A'))

-20-

!

/

I

The compiler will then automatically reallocate A (and rename the result A«)

Into the same storage area when the assignment A'-A is encounterea.

As a final example using these language features, we present IVTRAN

code which reallocates a 3 x 5 array from the form shown in Figure 6a to

the form in Figure 6d, and then, simulteneously, multiplies each element

by TT and computes the sine.

DIMENSION A(3,5) [(1), (2)] Al (3,5) [(1,2)]

OVERLAP ((A),(AD)

Al »A

D0 1FORALL(IJ)/[l...3].C.[l...5]

1 Al(IJ)=SIN(3.1416*Aiaj))

The allocation declaration and OVERLAP statement, and the techniques

for using them to change allocations, provide the programmer with the ability

to adjust his data layout to best suit his algorithm. By using these state-

ments together with DO FOR ALL loops, a programmer may precisely express

both the parallel computations and the associated local data layout that

utilizes the unconventional ILLIAC hardware features.

-21-

11 12 13 1« 15

21 22 23 M 25

31 32 33 3* 35

I

11 21 31

12 22 32

13 23 33

14 2<» 34

15 25 55

11 12 13 14 15

a 22 23 24 25

31 32 33 34 35

11 12 13 14 15 21 22 23 24 25 31 32 33 34 35

-22-

WORD 0

fit PE1 PE63

0

,

I
•
m

100 * + * *'

101 +
•
•

163 •f
•
•

2047 .

Figure 1

_

-23-

:V '■*"

!
Ill 112 113 lit

121 122 123

131 132

141

211 a 2 213

221 222

231

115 116 liy 118

m 125 126 127

133 13»« 13503^

1«»2 143 144 145

155@©@
l6l 162 163

171 172

215 216 217

225 226

21';

223 22-'

311 312

321

232 233 23^ 23!

241 241 242 243

251 252 253

261 262

271

313 314 315 316

322 323 324 325

331 332 333 334

341 342 343

351 352

361

119 HA

128 129 12A

137 138 139 13A

14t IU7 148 149 mk

164 165 166 167 168 169 16A

173 174 175 176 177 178 179 17A

218 219 21A

227 228 229 22A

^3S>237 238 239

245 246 247 248

23A

249 24A

254 255 256 257 258 259 25A

263 [26^ 265 266 267 268 263 26A

272 273 274 275 276 277 278 279

317 318 319 31A

326 327 328 329 32A

335W>337 338

344 345 346 347

339 33A

348 349 34A

353 354 355 356 357 358 359 35A

362 363 364 365 366 367 368 369

371 372 373 374 375 376 377 378

27A

36A

379 37A

Ffgure 2

I
I
I

•

-24-

Ill 112 113 HU

121 122 123

' 131 132

1UA 141

©©... ""
168 169 16Ä

177 178 179 17A

211 212 213

221 222

23Ä ' 231

249 24A

258 259 25A

267 268 269 26A

276 277 278 279

311 312

32A 321

339 33Ä

348 349 34A

357 358 359 35Ä
366 367 368 369

375376377 378
115 116 117 118

124 125 126 127

133 134 135^3^
142 143 144 145

l6l 162 163

171 172

|21^ 215 216 217
223 22t 225 226

232 23J 0 235
241 242 243 W

251 252 253

261 262

27A 271

313 314 315 316

3?2 323 324 325

331 332 333 334

341 342 343

351 352
36Ä '" 361

379 37Ä

119 HA

128 129 12A

137 138 139 13A
146 147 418 149

©@@®
164 165 166 167

m 174 175 176

218 219 21A

227 228 229 22A

«3^237 238 239
»5 246 247 248

[iyj 255 256 257
263 l^l 265 266

272 273 pJrj 275
J17 318 319 31A

326 327 328 329

335^3^337 338

344 W 346 347

353 35* 355 356

362 363 364 365

371 372 373 374

■

Figure 3

-25-

~r-

I
I
I
I
[
[
[
[
I
L
I
I
I
I
I
I

111 121 131 m 151 161

112 122 132 1U2 152

113 123 133 W

lit 12<t 134

115 125

116

211 221 231 2«»1 251

212 222 232 2U2

213 223 233

214 22U

215

311 321 331 341

312 322 332

313 323

31«»

171

162 172

153 163 173

14U 154 164 IJU

135 145 155 165 175

126 136 146 156 166 176

117 127 137 147 157 167

113 128 138 148 158

119 129 139 l^

HA 12A 13A

261 271

252 262 272

243 253 263 273

234 244 254 264 274

225 235 245 255 265 275

216 226 236 246 256 266

217 227 237 247 257

218 228 238 248

219 229 239

21A 22A

351 361 371

342 352 362 372

333 343 353 363 373

324 : -(4 344 354 36«l 374

315 325 335 3'»5 355 365

316 326 336 346 356

317 327 337 347

318 328 338

319 329

31A

177 -

168 178

159 169 179

14A 15A 16A 17A

276

267 277

258 268 278

249 259 269 279

23A 24A 25A 26A 27A

375

366 376

357 ^67 377

348 358 368 378

339 349 359 369 379

32A 33A 34A 35A 36A 37A

Figure 4

-26-

I

L
I

111 112 113

121 122 123

131 132 133

141 142 143

151 152 153

161 162 163

171 172 173

211 212

221 222

231 232

241 242

25*1 252

261 262

271 272

311

3a
331

341

351

361

371

114 115

124 125

134 135

144 145

154 155

164 165

174 175

213 214

223 224

233 234

243 2'I4

253 254

263 264

273 274

312 313

322 323

332 333

342 343

352 352

362 363

372 373

116 117

126 127

136 137

146 147

156 157

166 167

176 177

215 216

225 226

235 236

245 246

255 256

265 266

275 276

314 315

324 325

334 335

344 345

354 355

364 365

374 375

118 119

128 129

138 139

148 149

158 159

168 169

178 179

217 218

227 228

237 238

247 248

257 258

267 268

277 278

316 317

326 327

336 337

346 347

356 357

366 367

376 377

11A

12A

13A

14A .

15A

16A

17A

219 21A

229 22A

239 2>k

249 24A

259 25A

269 26A

279 27A

318 319 31A

328 329 32A

338 339 33A

348 349 34A

358 359 35A

368 369 36A

378 379 37A

Figure 5

-27-

•

■

■

■

I
I
I
I
I
I
I
I
I
I
I
I
I

Allocattan Doclaratlon

11 12 13 Ik 15

21 22 23 2^ 25

31 32 33 3«» 35

[(1M20 or [(1).${2)]

11 21 31

12 22 32

13 23 33

14 2k 34

15 25 35

[>(1).(2)]

11 12 13 14 15

21 22 2) & 25

31 32 33 34 35

[#(1).(2)]

11 12 13 14 15 21 22 23 24 25 31 32 33 34 35

Qi.t»]

I

Figure 6

I

CHAPTER II

IVTRAN: A DIALECT OF FORTRAN FOR USE

ON THE ILLIAC IV

1. Jj~*

■

1. • INTRODUCTION

This manual describes the IVTRAN*language# a dialect of FORTRAN
for use on the ILUAC IV computer. The IVTRAN language has been designed
both for use In converting existing FORTRAN programs for use on the
ILLIAC IV and for construction of new programs to make use of the unique
features the ILLIAC IV provides. The name "IVTRAN" Is used to refer both
to the language described In this manual and also to the language processor,
called the compiler, which translates IVTRAN language programs Into
ILLIAC IVmachine language.

1.1 The Language

To aid in program conversion and programmer training, the IVTRAN
language Incorporates many of the extensions to ANS standard FORTRAN
which are part of the IBM/360 and CDC/6600 FORTRAN languages. These
features are outlined in Appendix C.

A major feature of the ItfTRAN system is the PARALYZER, a compiler
option for use in program conversion. The PARALYZER examines DO-loops
of a program to be converted for use on the ILLIAC IV and transforms the
DO-loops into equivalent but more efficient DO FOR ALL statements which
exploit the parallelism of the ILLIAC IV hardware. This feature is described
In Appendix D.

The writer of new programs In IVTRAN has several'features to aid
in producing efficient programs. The first and most Important of these features
is the DO FOR ALL loop which specifies parallel operations on aggregates
of data. Array expressions and statements provide a natural shorthand for
certain commonly used parallel operations. Storage allocation for data can
be specified so as to achieve the most effective compromise between
storage efficiency and the use of parallelism. Storage allocation consid-
erations are described in detail in Appendix B. Lastly, the user can aid

* pronounced "four-tran"

-29-

l

the compiler in optimizing his program by specifying expected execution
frequencies through the FREQUENCY statement and external procedure
side-effects through the EXTERNAL statement.

1.2 The Compiler and Linkage Editor

The IVTRAN compiler, operating on the TENEX version of the
PDP-10, translates IVTRAN source program units into relocatable object
modules. The linkage editor combines one or more modules translated
by the compiler with any required library programs to form a load module
which can be run upon the ILLIAC IV.

1.3 The Manual

This manual is 01.; inized to combine both conciseness and read-
ability. Each language feature has its written form described in the body
of the manual in English. Appendix A gives a formal syntax for the complete
IVTRAN language. The meaning of each language feature is given in
English in the body of the manual. Each section has examples of both
valid and invalid uses of the language features described.

Although this manual is a complete description of the IVTRAN
language, it can be more easily understood if the reader is already
acquainted with the FORTRAN language for another computer. A useful
source for this information is the set of programmed instruction texts
produced by IBM, "FORTRAN IV for IBM System 360", IBM Order Nos.
SR29-0080 through SR29-0087.

-30-

-
■

■

r

.

2. ELEMENTS OF IVTRAN

This chapter identifies the major structures of the IVTRAN
language and serves as an Introduction to the subsequent chapters.

2.1 Programs and Subprograms

A IVTRAN program consists of a main program or a main program
plus one or more subprograms. Program execution begins at the first
executable statement of the main program. Thereafter, unless a control
statement is encountered, control proceeds from one executable statement
to the next. Control statements cause control to transfer to another point
in the same program unit or to an entry point of a subprogram.

There are three types of subprogram: the subroutine subprogram,
which is referenced in a CALL statement; the function subprogram, which
Is referenced within an expression and returns a value for use in that
expression; and the block data subprogram, which specifies initial data
values for COMMON variables.

In IVTRAN, as with other FORTRAN systems, each program unit is
compiled independently allowing a single program unit to be updated without
requiring recompilation of other program units. However, unlike oth.jr
FORTRAN systems, the linkage editor checks the consistency of specifica-
tions across program unit boundaries. Thus a user who inadvertently
mis-matches actual and formal parameters or who uses inconsistent
common declarations is informed of his errqr at the time of linkage editing.

2.2 Statements

A IVTRAN source program consists of a set of statements each of
which performs one of two functions:

— it causes operations to be performed (e.g., arithmetic operations,
input/output, or branching) or

— it specifies program or data characteristics (e.g., array size
or number and type of subprogram arguments).

-31-

The first type of statement is called an executable statement; the second
is called a specification statement.

order:
The statements of a program unit must be written In the following

— Subprogram statement (BLOCK DATA, FUNCTION, or

SUBROUTINE), If any.

— IMPLICIT statement. If any.

— other specification statements, if any.
— Executable statements, at least one of which must be present,

except in a block data subprogram, where executable statements
are not allowed.

— Debug statements, if any.
~ END statement.

The FORMAT, NAMELIST, and DATA statements may appear anywhere after
the IMPLICIT statement, if present, and before the END statement.

Statement Lav.ut

A program unit occupies one or more lines which are in turn
divided into the following fields:

~ Label field - character positions 1 to 5. This field contains the
attached label (statement number) or is blank. The label. If
present, occupies one to five adjacent columns and is preceded
or followed by one or more blanks. Blanks may not be Imbedded
within the label.

~ Continuation field - character position 6. This field is blank
or zero if the line begins a statement and contains some other
character if the line is the continuation of a statement begun
on a previous line.

— Statement field - character positions 7 to 72. This field contains
the body of the statement.

-32-

I

■

I

— Identification field - character positions greater than 72. This
field is ignored by the compiler and may be used for whatever
purpose the programmer desires. Traditionally, this field is
used ior identification and sequencing.

Comments are an exception to the above field usage, beginning
with C,$, or * in the first character position and having any characters
whatever in the remainder of the line. Comments are ignored by the
compiler and are used to improve the readability of the program. A comment
may not be conUnued on a subsequent line through use of the continuation
field.

Statements are separated by the character $ within a line or by the
end of the line followed by a comment line or a line whose continuation
field is blank or zero.

Examples;

Comment:

C THIS IS A COMMENT
Multi-line statement:

109 A = B +
1 C* D

Multi-statement line:

FUNCTION TWICE(X) $ TWICE = 2.0 * X $ RETURN $ END
Combination of multi-statement line and multi-line statement:

25 IF(B .LT. C) GO TO 190 $ BIC = C $ K «
X K/2 $ L = L+ 1

2.3 Expressions

The expression is used to compute « value to be stored in a vari-
ablere be output, or to direct flow of control. Expressions are formed by
combining operators (e.g., s-,-,*,/) and operands (e.g., variables,
constants, and function references). An expression may be either an
array expression or a scalar expression. A scalar expression computes
a single value. An array expression computes a set of values.

-33-

-■^i

I
2.4 Tokens

Tokens are strings of characters which represent the objects and
actions described in the language. There are the following types of tokens
In the IVTRAN language:

— constant (e.g., 6.023)

— Identifier. An identifier is a letter or a letter followed by one
to five alphanumeric characters. An alphanumeric character
Is a letter or digit, (e.g., niXTA)

— label. A label is one to five decimal digits, (e.g., 2300)
— operator (e.g., .OR., .AND., +, -)
— separator (e.g., comma, parentheses, colon)
— alternate return (e.g., &12)

— keyword (e.g., DIMENSION, RETURN, INTEGER)

Unlike the blank in most other FORTRAN languages, the blank char-
acter in IVTRAN is significant. That is, blanks may not appear within a
given token nor may a token be continued upon a second line (with the
exception of the Hollerith constant). Blanks and continuations may be
placed between any two tokens for purposes of readability. A blank or
continuation rnust.appear between two tokens if the first ends with a letter
or digit and the second begins with a letter or digit.. This convention is
used in writing English sentences to prevent ambiguity and Improve read-
ability. For example, AN ICE HOUSE is different from A NICE HOUSE and
neither is correctly written ANICEHOUSE.

To facilitate conversion of existing programs, the compiler is pre-
pared to accept a single keyworf in place of two adjacent keywords. Fa-
example, GOTO and GO TO will be considered equivalent as will
BLOCKDATA and BLOCK DATA.

The formal syntax (Appendix A) does not take into consideration
the effect of blanks. That is, it defines tokens and the legal combina-
tions of tokens in a program unit, but does not define the optional or
required blanks between any two tokens.

-34-

k -

■

2.5 Characters

The characters used to write a IVTRAN program are the prlntlno

Asirrrth; ren bit ^character set which ^ ^ - ^ ASR 33 keyboard plus blank (space); that Is, codes 040fl through 137
In addition, when lines are Input through the teletype, the following8'
characters serve to delimit lines;

" carriage return, line feed. This Is the standard line terminator.
.The following, though acceptable, a« not normally used

— line feed
— form feed
— vertical tab
— altmode (escape)

2.6 Data Types

types- A Varlable ^ fUnCtl0n may ^^ ^ 0f ^ f0llOWlng 8even ***

— Integer
— double Integer
— real

— double precision
~ complex
— double complex
— logical

^rr nrany" *- -^ ^ - -' ^ * - - *«-*. three data types:

— Hollerith
— octal

— hexadecimal

The properties of data of each of the data types Is given in Table 1.

-35-

I
I
I
I
I
I
I
I
I
I
I
I
I
[
I

II

The data type of a constant is implied by the form In which it
is written. The data type of a variable or function may be specified in

one of three ways:

— Predefined specification contained in the IVTRAN language
— IMPLICIT statement
— Explicit specification statements

An explicit specification statement overrides an IMPLICIT statement,
which, in turn, overrides the predefined specification.

The predefined specification declares a variable or function to
be of type integer if the first letter of its name is IJ,K,L,M, or N and

type real otherwise.

The IMPLICIT statement allows the programmer to associate a data
type with an initial letter in much the same way the predefined specifica-
tion does. The appearance of an initial letter in an IMPLICIT statement
overrides the predefined specification.

A type or FUNCTION statement may specify the type
of an identifier for a variable or function. Both methods of association
of a data type with an identifier are described in greater detail in

section 6.2.

■

CJ XT CM 'r V 00
co U> CO .«, u> eg

«
• IK H
"S
c5

3 8
CM C«4

• ^i CO CO

>E
C :

00 C

M «0

0»fl)
S«fc

r* -H

a
3

a
.3

^r ^

a a
3

5
C

2

I
X

I I
^ CO

CM N

I

I I
^ 00

CM CM

00

I
£J Ö * •"*

I
CM

+1 +1

00
CO

V to
CM CM

+ 1 +1

n
o

a JJ

i
I
ra
10

0)
£
ID a

1 1
00 00
^ v

1 CM CM ^-» *—■

1 1 1

1 1
00 oo

1 ^ v
1 CM CM

CM
CO

O O)
CO V
at 1 o Vf o

CM o ^
1 f-i X o Si m

00
X CO •
i-t • 00
r». CM •
CM ai dl

1. ^ 00
00 CO

in CO (O
«o «5 —t
l «-I 1
CM CM CM

2
>
H
iS
&

0) Q)

0) o>

I I
tJ t) i * 0) o

fl) ® Q>

5 55

—*
a a>

o
c
■
s
o «s

§

I I
I I Q. Q. a a a «

I If
CO Js

U

-37-

0)
CO

C

.1
CO

I
2

u

ou
bl

e
om

pl
ex

 - s

ag
ic

a

oi
le

r

•o o ^ ffi

•

:

o

0)

5

I
■ I
- 'S I i.

3

CO
CO t*»
rH 0> 00

tn 00 •
>H CM a>

öl " x II
JglcM ^» U>
^il CM CM CM

rmmmmtv

mm

3. CONSTANTS

I
I
I

i

The data type of a constant is determined by the way in which a
constant Is written, constants of different types having different forms.
A constant of integer, double integer, real, or double precision type may
be signed. A signed constant is a constant of integer, double integer,
real or double precision data type preceded by a plus or minus character.
An optionally-signed constant is an unsigned constant or a signed constant.

3.1 Integer Constant

An Integer constant is a string of decimal digits whose value is
between zero and 16,777,215.

Examples;

Valid integer constants:
0
4754170
01810

Invalid integer constants:

!• (contains decimal point)
1,234,567 (contains commas)
20555000 (too large)

3.2 Double Integer Constant

A double integer constant is a string of decimal digits whose value
Is between 16,777,216 and 281,474,976,710,655. For smaller values, the
programmer may use the Integer constant and conversion will be performed.

Examples;
Valid double integer constants:

23456789

100000000000000
Invalid double integer constants:

0 (too small)
1000000000000000 (too large)

-38-

3.3 Real Constant

A real constant consists of a basic real constant, a basic real
constant followed by a real exponent, or an Integer constant followed by a
real exponent. A basic real constant Is a string of digits preceded by,
containing, or followed by a decimal point. A real exponent is the character
E followed by an optionally-signed integer constant. The value of a real
constant is the value of the basic real constant or integer constant
interpreted as a decimal fraction times ten to the value of the real
exponent, if present. A real constant may assume values from app.ox-
Jmately 2 .71E-20 to 9.22E18 and zero.
Examples;
Valid real constants:

0.
23.32
34.56E3
34.56E-3
.45E+15
32E1

Invalid real constants:
99
6.023E23
9.1066E-28

(=34560.)

(=.03456)
(=450000000000000.)
(=320.)

(no decimal point)
(too big)
(too small)

3.4 Double Precision Constant

A double precision constant consists of a basic real constant
followed by a double precision exponent or an Integer constant followed by
a double precision exponent. A double precision exponent is the character
D followed by an optionally-signed Integer constant. The value of a double
precision constant is the value of the basic real constant or integer'
constant interpreted as a decimal fraction times ten to the valua of the
double precision exponent. A double precision constant may assume
values from approximately 2.35D4930 to 8.85D-4932 and zero.

■

-39-

«■'■'iliilWilW—fI

Examples:

Valid double precision constants:
6.023D23
9.1066D-28
300D+4900

Invalid double precision constants:
2 «30 (missing exponent)
41.1D5000 (too big)

3.5 Complex Constant

A complex constant consists of a pair of optionally-signed real "
constants representing, respectively, the real and imaginary parts of a
complex number, separated by a comma and enclosed in parentheses.

Examples:

Valid complex oonstants:

U • * -2.) (= l-2i, where i=/f^i)
(-.7071 ,-.7071)

(+34.5El0,-.22E-2)
Invalid complex constants:

(2.3.) (missing comma)

f1' *) (neither real nor imaginary part a real constant)
(2. 1E4,4.2D7) (imaginary part not a real constant)

3.6 Double Complex ponstant

A double complex constant consists of a pair of optionally-signed
double precision constants representing, respectively, the real and imaginary
pans of a complex number, separated by a comma and enclosed in paren-
theses.

Examples:

Valid double complex constants:
(1D0,2D0)

(-.0001D4.+1.000D-4)
(4D4000,SD-4000)

-40-

•i—

■

I
Invalid double complex constants:

(3. ,2 .D30) (real part not a double precision constant)
(.001D-1, .001E-1) (imaginary part not a double precision constant)

3.7 Logical Constant

There are both logical scalar constants and logical arrav constants
The former represents a single logical value. The latter represents an
array of logical values.

^•7.1 logical Scalar Constani-

A logical scalar constant is either the string of characters .TRUE
or the string of characters .FALSE.. The abbreviations, .T. and .F. are
also allowed.

Examples;

Valid logical scalar constants:

.TRUE. .T. (both represent the value true)

.FALSE. .F. (both represent the value false)
ImaM logical scalar constants:

.TRUE (decimal point is missing)
F (both decimal points are missing)

3*7'2 Logical Array Constant

There are two forms of the logical array constant. Both forms
specify which of the array elements are to assume the value true. All
elements of the array which are not specified assume the value false. In
either form the extent of the constant may either be Implied by the basic
logical array constant or explicitly attached.

3.7.2.1 Enumerated Logical frrav Constant

An n-dimenslonal enumerated logical array constant Is written as a
list of n-dimenslonal index values, separated by commas and enclosed In
brackets. An n-dlmensional index value iu written as exactly n Integer

-41-

V

constants, separated by commas and enclosed In parentheses. A one-
dlmenslonal index value may be optionally written as Integer constant
without enclosing parentheses. The extent is determined from the maximum
value of the integer constants appearing in each index position.

Examples:

Valid enumerated logical array constants:

constant extent true value false value

[(1,2,3),(2,2,2)] (2,2,3) (1.2,3). (2,2,2) (1.1,1),(1,1,2). (1,1.3)

0,2,1). (1,2,2)
(2.1,1).(2.1.2).(2.1.3)
(2,2.1). (2,2,3)

[(2)]

[1.3.5.7]

[3<4,6)

[1.3] (6)

(2)

(7)

(4.6)

(6)

(2) (1)

(D,(3),(5).(7) (2). (4), (6)

none all

W,(3) (2). (4). (5). (6)

Injalld enumerated logical array constants:

[3 (Extent cannot be determined.)
[(2.1). (4)] (Conflicting dimensionaUty for index values)
[(1.1), (2,2), (3,3)] (4) (Explicit extent does not agree in dimen-

sionality with index values)
[(3,2,1), (1,2,3)] (2.2,2) (Index va lue s exceed the extent)

3.7.2.2 Iterated Logical Array Constant

An Iterated logical array constant specifies a one dimensional airay
(vector) of logical values. It is written in one of the forms:

[i.s...f]
or

[!...£]

where i.s. and fare integer constants representing the initial, second, and
final index values for the true elements. If s Is not specified. It is assumed
to be 1+1. The true values are all those elements j for which

-42-

-. ^

•

I
and

J - 1 + n(s - 1)

where n is a non-negative Integer. The initial, second, and final values
must be in increasing order of magnitude. That ip,

0 <1< s< f.

Valid iterated array logical constants:
constant extent

us.

true values false values
[1...5] (5) (i),(2),(3),(4).(5) None
[1...5](10) (10) (1),(2),(3),(4),(5) (6), (7), (8), (9), (10)
[2,4...10] (10) (2L(4),(6),(8),(10) (D,(3M5),(7),(9)
[1,4...9] (9) (D,(4),(7) (2). (3) ,(5), (6), (8), (9)

Invalid iterated array k)gical consta nts:
[10• • • 1] (Final value less than initial value)
[-10... 0] (Initial and final values must be greater than zero)
[1... 50] (10) (Final value larger than explicit extent)
[1,3,... ,44] (Extra commas)

[(1/1)»(2,2)... (10,10)] (Only one-dimensional arrays can be

specified with this type of constant)

3.8 Hollerith Constant

There are two forms of the Hollerith constant. Each represents a
character string of one or more printing characters and blanks. Hollerith
constants are permitted only as initial values in the DATA statement and as
arguments of a subroutine call or function reference.

3.8.1 Count-delimited Hollerith Constant

The count-delimited Hollerith constant is written as an Integer con-
stant with value n^255 followed by the character H followed by exactly n
characters which constitute the value of the constant. Blanks are legal
within the n character string and are included in the count, n. End of line
is permitted within the n-character string and is not included in the count n.
This allows Hollerith constants to be created which have more than 69
characters.

-43-

-— _
3
1

I
Examples;
Valid count-delimited Hollerith constants:

2HIV

7H$199.95

14HFERDINAND FOCH

SHWON'T

Invalid coun -dplimlted Hollerith constants:
2HELP (count too small)

5HHELP (count too large, unless trailing blank is

included)

10 HEXECUTIVES (blank not permitted between n and H)

3.8.2 Quote-delimited Hollerith Constant

The quote-delimited Hollerith constant is written as string of n^ZSS

characters enclosed in apostrophes.* Within this string, an apostrophe is

represented as a pair of adjacent apostrophes. End of line and blank are

permitted within the string. Blank is a part of the string. End of line is not.

Examples:
Quote-delimited

'TEXT'

'DQH"!'
,FO,,C,,S"LE,

'$ IS A DOLLAR SIGN'

Count-delimited equivalent

4HTEXT

SHDON'T

SHFQ'C'S'LE

18H$ IS A DOLLAR SIGN

3.9 Hexadecimal Constant

The hexadecimal constant represents an integer or double integer

value as a number with radix 16. The digits with values 10 through 15 are

represented by the letters A through F. A hexadecimal constant is written

as a string of hexadecimal digits immediately preceded by the letter Z. If

the value of the string, interpreted as a number in the hexadecimal number

system, is less than 224 the constant represents a value of integer data

type. If the value is greater than or equal 2 but less than 2 the con-

stant represents a value of double integer type. In no case may the value

* Called "single quote" by some programmeis.

-44-

48 * '
exceed or equal 2 . The hexadecimal constant is permitted only as an
initial value within the data statement.

Valid hexadecimal constants:

ZA (=1010)

ZFF (=25510)

ZFACECAB054CA (=a double integer)

Invalid hexadecimal constants:

ZBRA (R is not a valid hexadecimal digit)
ZAAABBBCCCDDDE (too large)

Z 12 (blank not permitted)

3.10 Octal Constant

The octal constant represents an integer or double integer value as

a number with radix 8. An octal constant is written as a string of octal

digits either preceded by the letter O or followed by the letter B. If the

value of the string, interpreted as an octal number, is less than 224 the

constant represents a value of the integer data type. If the value is greater

than or equal to 2 and less than 248 the constant represents a value of the

double integer data type. In no case may the value exceed 248. The octal
constant is permitted only as an initial value in th& DATA statement.

Examples:

Valid octal constants:

077 77B (both - 6310)
077777777 (=224-l)

100000000B (= 224, a double integer value)
Invalid octal constants:

O377600B (either the O or the B but not both are permitted)
O10000000000000000 (too big)
789B (8 and 9 are not octal digits)

-45-

/
f

I
4. VARIABLES

A variable Is a quantity whose value may change during the execu-

tlon of a program. A variable Is associated with a storage area within a

program. Both scalar and array variables have an associated data type

which is determined through the use of the type statement, the IMPLICIT

statement, or through the predefined type. Array variables have as assoc-

iated extent which must be declared in a specification statement and an

assoclatd allocation which is either defined in a specification statement

or is the predefined, default allocation. Throughout the body of this manual,

default allocation is assumed. Other allocations are described in Appendix B,

4'1 Scalar Variable

The scalar variable represents a single quantity and is associated
with a single storage location. A scalar variable is referred to by an
Identifier. y

Examples:

Valid scalar variable names:
A

PITCH

VAT69

ICURYY

fiwalld scalar variable names:
99THMP

PRESSURE
CA$H

4.2

(does not begin with a letter)

(over six characters)

($ not a letter or a digit)

Array Varlahl«*

An array variable represents a collection of values of a single data
type and is associated with a set of storage locations. The number and

structure of the values is determined by the array extent. The arrangement

to storage is determined by the array allocation. A complete array is referred

to by an Identifier. A single array element is referred to by writing the array

name followed by a subscript. Subarrays oi the array are referred to

by an array cross-section which fixes one or more subscripts while
allowing the remainder to vary.

-46-

4.2.1 Array Extent

An n-dimensional array has an extont which is written as a list of

n non-zero integer constants, each called a dimension, separated by

commas and enclosed in parentheses. The number of elements in the array

Is the product of the dimensions. Each dimension determines the maximum

value of the corresponding subscript position in array element references

and array cross-section references. An array which is a dummy parameter

to a function or subroutine may have one or more variable dimensions.

Each variable dimension is an integer scalar variable passed to the function

or subroutine as a parameter or in a common block. A variable dimension

may not be modified within the function or subroutine and must have the-

same value as the corresponding dimension of the actual argument.

Example:

Extent Legal subscript values

(5) (l),(2),(3),(4)/(5)

(3,4) (1,1),(2,1),(3,1)

(1,2), (2,2), (3,2)

(1.3), (2,3). (3,3)

(1.4),(2,4),(3,4)

(3,2,3) (1,1,1),(2.1,1),(3,1,1)

(1,2,1),(2,2,1),(3,2,1)

(1,1,2),(2.1,2),(3,1,2)

(1,2,2),(2,2,2),(3,2,2)

(M,3),(2,l,3),(3,l,3>

(1,2,3),(2,2,3),(3,2,3)

-47-

■

4.2.2 Array Element

An array element Is referred to by writing an n-dimenslonal array
name followed by an n-dlmenslonal subscript. An n-dimensional subscript
Is a parenthesized list of n scalar expressions of type integer separated
by commas. Double integer, real, anddouble precision scalar expressions
are also permitted and will be converted to integer type before accessing
the array element. At the time the array element reference is executed the
scalar expressions must each evaluate to an integer between 1 and the
corresponding dimension of the array. The result is a scalar value of the
same data type as that of the array name.

Examples:

Valid array element references;
PRIDE (LIONS)
GRID (I+i;J-3)
GROSS (12,12)

Invalid array element references:

ASäX Extent Reference
DOZEN (12) DOZEN (-3)

SPACE (3.3,3) SPACE (I J)

(subscript value must
be between 1 and 12)
(dimensionality of sub-
script must equal
dimensionality of array)

-48-

.

4.2.3 Array Cross-Section

An array cross-section is referred to by writing the array name
followed by a parenthesized list of subscript expressions and asterisks
separated by commas. Each subscript expression is a soelar Integer
expression corresponding to a fixed subscript. Each asterisk corresponds
to a subscript which varies over its allowable range. The subscript
expressions may be of double integer, real, or double precision data
types and will be converted to Integer type before accessing the array
cross-section. The result is an array of the same data type as the array
cross-section name with an n-dimensional extent where n is the number
of asterisks in the reference. The ith dimension of the resultant array is

Lthe same as the J^h dimension of thö base array, where j is the index of
the 1th asterisk.

1

Examples:
Extent Cross-section
(5,60) B(I,*)

B(M)
(300,20,4) A(IJ,*)

Ml,*.*)
Ml.*.*)
A(M#K)
A(*J,*)
A(*,*,K)

Result Extent
(60)
(5)
(4)
(20)
(20,4)
(300)
(300,4)
(300.20)

-49-

-

5. EXPRESSIONS

An expression computes a value or set of values for use within
a statement. A scalar expression computes a single value. An array
expression computes a set of values. A scalar expression has of one
of the declarable data types: integer, double integer, real, double pre-
cision, complex, double complex, or logical. An array expression has
one of the declarable data types and an extent.

5.1 Expression Form

An expression is composed of operators, which specify operations
to be performed, and primaries (operands), which specify the values upon
which the operations are to be performed.

5.1.1 Primaries

A primary is a constant (chapter 3), a variable, array element, or
cross-section (chapter 4), a function reference (section 7.3), a set selector
(section 5.1.1.1), or a parenthesized expression.

Examples;
(-3.2,4E-6)
(3*1-14)
SIN(X)
A
A(I-1,J+1)
AKK^L-l)

C(1)/[1...50]:I.LT.J]

complex constant
parenthesized expression
function reference
variable
array element
cross-section
set selector

5.1.1.1 Set Selector

A set selector is written:
[(I)/S:B]

where I is an integer scalar variable, S is l-dinensional logical array
expression and B is a logical scalar expression which may depend upon I.

-50-

.
■ /

L
I
I
I
I
I

Within B all array element references must be either independent of I
or have exactly one subscript of the form:

or

1+ C
or

I-C
where C . 5 an expression independent of I.

The result of evaluating a set selector is a one-dimensional logical
array with the same extent as S and whose values (J) are true if S(J) is
true and B is true when evaluated with I=J.

Examples;
Valid set selectors:

Set selector Result Value
[(I)/[1.,.10]:I.GT.7] [8.9.10] (10)
[(0/ [1... 100] :I**3-6*1**2+11*1-6 .EQ. 0] [1.2,3] (100)
[(D /C1...50]:I.LT.14.AND. I.GT.7] [8.9.10.11.12,13] (50)
[(D/[1...99]:L .EQ.L+1] [](99)

Invalid set selectors:

[(I J)/ [(i, 1), (2,2)] :I+J.EQ.2] (Invalid with default alloca-
tion. See Appendix B.)

[(0/ [1,1), (2,2)] :I.GT. 1] (logical array expression

must be singly dimensional)
[(D/ [1... 100]: A(2*l) .BQ. 1.0] (improper use of I in array

reference)

5.1.2 Complete Expressions

An expression is either a primary, a unary operator followed by an
expression, or an expression followed by a binary operator followed by an
expression. The order of operations is determined by the precedence between
operators, the operator with the greater precedence being evaluated first.
If the precedence of operators is the same.non-cummutatlve operations are
performed in left-to-right order and comrfutative operators may be performed
in arbitrary order. A unary operator may only follow an operator of lower
precedence. The legal operators, operands, and precedence are given in
Table 2.

-51-

■

:

f
(

i

§1

3 «

CM.
Ü

e
N

«»1 C«J
U Ü
73 3
w a>
E E

-C-C
■»-< *-«

u u

CM «M C>J CM
ü Ü o Ü
4J 4J 4-> 4-1
a) 0) a> (u
E E E E
JZ£ JCJC

U U UI k.
(0 <0 10 R)

8<0 «0 <0 (0 fO o o u u u

g
9

8 8 10 (0
ü Ü

<0 10
ü Ü

■^ ^H —1 ^~« -^ —4 ^4 *-« «*-« ^4 ^^ ^^

I

2

u

a

0)
E

4->

Ü
10

o Ü
•4-» .M
0) Q)
E E

SIC
10 (0

O ü Ü o
-H —« _1 -^
4J -M *J 4-1
V 0) 0) 0)
E E E E

4-> ^ 4-1 4J
-4—4.-4—1
IM i4 L. W
10 10 <0 10

s s ® s
a a
E E
88
CX Q.
a» a)
0 o
3 a»
u o o u u u
»4 —4 »H -^ "H —4
4-> 4-> 4-1 4-> 4-> 4J
0) 0) 0) 0) 0) 0)
1 E E E E E

T"t ""• •»■• »H -4 -4
Lj W li U U L,
<0 <0 (0 10 IO 10

a a
E E
o o
Ü o

4-1 4J a a
a) a>
o u

i
•o
Ü

)0
Ü

? ?
10 <0
u o IO 10

ü Ü
-H -4 •»4 -4

ffff ffff

«0 10

CO

o
2

S
2

CO

C
O
13
IO

U
c

I a

IO
c
S
*
*

c o
IO

5"
a*;
E-o

co

O 10

o

I

u

00

c

0) c

CO
c
o

c3

—4 (0 -4 +J
m p)T3 J3
o o-a D
a c io M

C u A ro
5 •»! c a

<o
3 I

CO

10
3
O*
0)

g^ CO w 10 10
ö C ri «fl "A
« § 2 ^^
x: JC 3 u IM
4-> 4J -^ O* (U 0)

"2 jj 4J 4-»
w w 2 <o (0 W CO 3 xj q, Q)
0) « cr o k< ui

(0

• • • • •
3 ft^cywH M

Ü

U3

i
io »^
0)

CO

Ü
3

I
m
to

i
o

10
Di
0)
C

—4

s
ff

CO
0)
o

3 fa l|
88
-4 iH

|
0)
3

E o
3 X
01 0)

—4 -4

88
—4 MM

* * I
ST; :- : .:30- «I
PSßOjJjzÖ+eocos

'S»
CO

w CO M •-•

CO

I

u u o o
Cn D>
tt) 0)

4-» 4J

55
CO
C
a
o>
E

-

1M

18 5 o

gg
O U m

" "a

I
o

I
10
4->
3
E
§
u
c
o

CM CO

I
I -52-

■

Examples:

Valid expressions:

A+B

SIN00/ COS (X+1.0)

A*B+C

A+B*C
A/^/C
A*B*C

or
or

A.LT.B+C.OR.TEST.AND.GUESS

FLAG .AND.NOT.-A+B .LT.-A*B

Equivalent expressions:

(A*B)+C

A+B*C
(A/B)/C

CA*B)*C

A*(B*C)
CA*C)*B

(A.LT. (B+O) .OR.TEST.AND.GUESS)

FLAG .AND. (. NOT. (((-A)+B). LT. (-

(A*B))))
Invalid expressions:

A*-B •

A.LT.B.GT.C

A+B .OR. C/D

A .NOT. .LE. B

(unary operator follows operator

with higher precedence)

(.LT. gives logical result but .GT.

requires arithmetic operands)

(+ and / give arithmetic results bat

.OR. requires logical operands)

(use .NOT. A .LE. B or

A .GT. B Instead)

5.2 Expression Type

The type of a parenthesized expression Is that of its operand. The

type of a relational or logical expression is logical. The type of an arith-

metic expression is determined by the type of the operand(s). The type of

an arithmetic expression formed with a unary operator is that of the operand.

The type of an arithmetic expression formed with a binary operator is given
In Table 3.

-53-

I
•I

■Si1

S6 o o
QÜ

«O« 98 o O e, 1 ft) o

3 t
O O
QÜ

2 a
3 E
o o
OÜ

3 E
o o
QÜ

3 E
O O
QÜ

3 E
O O
QÜ

E
o
Ü

o.
E
o
Ü

si
o o

I
a
E
o
Ü

si
3 E
O O
QÜ

a
E
o
U

s
3 o-
3 e

o ä>

c

3 fi II
C
o ft) »<

PA

c
o

fl) -H
^ m

•§2 o 2

c
o

fl) -^c
-H ca

f 2

c
o

_ n

3 ü

«

3 S
O O
QÜ

& A v

It

s s

c

n •**
3 9
o £
Q(Su

• «

3 ü II
2 g

a
E
o
Ü

«.in

It
S6

•a
3 v
o *i

fl) «r1 <t> h -5 0) ^4 0)
xt en ^a o»
3 a» 3 0)

SS SS

a
o

■§2

c
fl) -^
ft «^
3 ü

Q(Su

•S © » o

3 E
o o

Si 9-
3 ."
o c
C4Ü

C

CM
O

S5 Ö
cr o»
a) fl)

5fc
3 fl>

C

O) «4

IS
3
a
E
o
Ü

It
35

I

§

it

a
i
Ss

d

3 5

fl) fl) fl)
a
E
o
Ü

I
S6

-54-

•

Examples:

Let I be integer. DI be double Integer, R be real,

DP be double precis ion , C be complex, and
DC be double complex.

Expression

I+DI

on
R**R
I*R+DI

DI+R+C

Result Type

DI
DC
R
DP

DC (note that the result type Is

independent of the order of
execution of commutative
operators)

I/I I

5.3 Expression Extent

The extent of a parenthesized expression is that of the operand.
The extent of an expression formed with a unary operator is that of the
operand. The extent of an expression formed with c binary operator is
given in Table 4 for all binary operators except .CROSS. For that operator,
the extent is the concatenation of the xtents of the two operands.

Example:
A has extent (3,40) and B has extent (500,6000).
A.CROSS.B has extent (3,40,500,6000).

B.CROSS.A has extent (500,6000,3,40).

TABLE 4; Expression Extent for Binary Operators

Operand 1
Scalar

Scalar

Array

Operand 2
Scalar

Array

Scalar

Array Array

-55-

■

Result Extent

Scalar.
Same as that of operand 2.
Operand 1 is applied to each
element of Operand 2.
Samo as that of operand 1.
Each element of operand 1 is

applied to Operand 2.
Same as that of operands 1 and 2,
which must have identical extents.

I
I
I
I
i
I
I

Example;

Let A. B and C be real arrays with extent (3) and the following
values:

A (1) = 0.0 B(l) = .25

A (2) - 1.0 B(2) = .5

A (3) = 2.0 B(3) = 1.0

C = A A yields

C(l) = 0.0

C(2) = 2.0

C(3) = 2.0

C «= (A+B)*4.0 yields

C(l) = 1.0

C(2) = 6.0

C(3) = 12 .0

L
I

I

C « 2. -A yields

C(l) = 2.0

C(2) = 1.0

C(3) = 0.0

5.4 Operators

Each operator listed in Table 2 has a different interpretation and
set of legal yalu3s.

5.4.1 Arithmetic Operators

Each of the arithmetic operators has the usual mathematical inter-

pretation. When operands of dissimilar data types are combined, the

operands are first converted to the result data type and then the operation
Is performed.

-56-

'W" ■ miMjfi i i|ii|.

Integer and double integer division produce ä result which is
truncated to the nearest integer whose magnitude does not exceed the
magnitude of the mathematical value represented by the division.

Division by zero is not defined.

A negative base may not be raised to a non-Integral power unless
either the base or the power or both Is of complex or double complex data
type. A zero valued base may not be raised by a zero valued exponent.

No result may be evaluated which yields a value outside the range
of values permitted for the result data type.

Examples:
Valid arithmetic operations:

3+4
2.5 * 4.0
1/3

1./3

1/3.
1./3.
15/7

(l.l.-2.2)-(.9,4.0)*2
Invalid arithmetic operations:

2/0

(-3 .)**(. 5)

0 ** 0

2**100
1E18*2E18

Result:
7
10.0
0

.33333333

.33333333

.33333333
2

(-.7,-10.2)

(division by zero not permitted)
(negaJve base may not be raised to
non-integral negative power unless complex)
(zero base may not be raised to zero
exponent)
(value out of range)
(value out of range)

I
L
I -57-

I

5.4.2 Relational Operators

The relational operators perfc i comparisons between arithmetic

values. The result is true if the re« on is satisfied and false otherwise.

When types are dissimilar, the comparison is performed after conversion
to the result type shown in Table 2.

Examples:

Valid relational operations:

3.5..LT, 4.5

1+1 .EQ. 2

»l+.l .EQ. .2

1/3 .GE. 1./3.

(l.,0.) .EQ. 2

Invalid relational operations:

(l.,0.) .LE. 2

Result:

true

true

(may not be true due to round-off
and truncation error)
false (1/3 = 0)

false

(complex only valid for .EQ. and .NE.)

5.4.3 Logical Operators

The result of each of the logical operators except . CROSS, is

given in Table 5. The result of A. CROSS,B is an array C whose elements
are defined by the following equation:

^l'^ ln'h'h V =A(I1'I2 y.AND.Bdj,^ 'U-
Example;

Let A = [1,3,4].

Let B = [2,3,5].

A.CROSS.B = [(l,2),(l,3),(l,5),

(3,2),(3,3),(3,5),

(4.2),(4,3),(4,5)]

-58-

I
I

i
i
£
I

TABLES: Bsiaiu^LLgigyLflEggftaa.

Operand 1:
Operand ?•

false
false

false
true

true
false

true
true

Operator:
.NCT.,.N. true
•AND...A.
.DIFF...D.
.OR.,.0.
.XOR...X.

b} 99

false
false
false

false
false
true
true

. false
true
true
true

false
true
false
true
false

Examples:

Let Y= .TRUE, and N = .FALSE.
Valid logical operations:

Y .AND. N

Y .OR. N

N .XOR. Y

Y .AND. .NOT. N

[l...i00] .AND. N

[2,4. ..20] .AND. [3.6...20]

[2.4...20] ,DIFF. [3.6...20]
•NOT. [1.3...10]

[1,2 3 5 8 l3]ao0).AND.[1,3.^;oT*7Jl,3.5.l3](IOO)

Invalid, logical operations:

[1/2.3.5.8.13] .AND.[1.3... 100]

Result:

false

true

true

true

[] (100)

[6.1?. 18]

[2.4,8.10.14.16.20]
[2.4...10]

Y.NOT. .AND. N

(extents of operands not

equal. Use [1,2.3,5.8.13](100).) [
(use .NOT. Y .AND. N,

Y .AND. .NOT. N or

•KOT. (Y .AND. N) Instead)

-59-

I
(

I
I
i

u

6. STATEMENTS

A statement is an executable statement or a specification statement.
Executable statements specify actions; specification statements düscribe
the characteristics of and arrangement of data, editing informatir.*, state-
ment functions, and the characteristics of and classification oi program
units.

6.1 Executable Statements

There are four types of executable statements:
1) Assignment statements
2) Control statt nents
3) Input/Output statements
4) Debug statements

6.1.1 Assignment Statements

There aro three types of assignment statements:

1) Arithmetic assignment statement
2) Logical assignment statement

3) GO TO assignment statement

6.1.1.1 Arithmetic Assignment Statement

An arithn.otlc assignment statement is one of the forms:
v = s

or a = s
or a = e

where v is an arithmetic scalar variable or array element reference, s is

on arithmetic scalar expression, a is an arithmetic array or array cross-
section reference, and e is an arithmetic array expression. Execution of
the statement causes the expression s or e to be evaluated, converted to
the data type of v or a according to Table 6, and assigned to v or a.
The extent of a must be the same as the extent of e. If the second form is
usec, the value of s is assigned to each element of a.

-60-

3
1

- -.

i Examples;

Let A be a real array with extent (5,6),

B be a real array with extent (5),

I be a scalar integer, and

J and K be double integer scalars.

Valid arithmetic assignment statements:

assigns the value of the expression

K*2 toj.

converts the value of J to Interer type

and dssigns it to I.

assigns the value 4.5 to each of the

elements of A.

assigns each element of B to the corres-

ponding element of the cross-section of A.

converts the value of the expression to

real type end assigns it to the array

element B(I).

Invalid arithmetic assignment statements;

A = B (Incompatible extents)

K = .TRUE. (incompatible data types)

J = K*2

W

A = 4.5

A(M)=B

B(I)=J+A(I,3)-J**K

6.1.1.2 Logical Assignment Statement

A logical assignment statement Is one of the forms;

v = s

or a - s

oi a = e

where v is a logical scalar variable or array elemenv. reference, s Is a

logical scalar expression, a is a logical array cr array cross-section, and

e Is a logical array expression. Execution of the statement causes the

expression s or e to be evaluated and assigned to v or a. The extent of

a must be the same as the extent of e. If the second form is used, the

value of s Is assigned to each element of a.

-61-

O
Ü £

i
6

•H n

I

2:

O
Ü
M

g
s
to

a

I

-Öl
3 <D

k
s

t; ti
> >
c c
8 8

i §
8 i

fi

t;
>
c

S
>
c

t: t: o 0) > > c c o 0
0 o

•4J

> s
c c
,9 e

>
c
o 1
Ü

*
%
> c

1
1 8

s
>
c
o o

t
>
c
8

«
o
«0
Ü c
2

*
0)

c
2

*
3

t:
>
c

8 8 8

ä S
*

u £ ^ ^

& s h I

i

c
82

s c

1
0)

10

«

ti s
i

-^

4->

5*
gti

i I

I I
ä ä

It
S5

CO

c
5

1 £ i

8C
»4

•M ■c
0 ^
■
s

4J
—t
3 ■ o

8 s
a c

• « g
ex
3 ♦* as

15 Ji

it
s

in
ed

ha

ng
in

g
b

er
et

a
le

d
.

01 5 -4 o
^j o
5 «

■
:3s sIS O "O

of
 t

h
e

da
tu

m
 w

lt
ho

si

gn
if

ic
an

t
d

ig
it

s
it
 o

f
th

e
va

lu
e

is
 r

t fi
2S
51
3 O

Si
©

iss
CO »J

5ife So o e o»
ÄÄ « CO m
****% «s
© >,- c c

to
 c

ha
ng

s

th
at

 o
nl

on

ly
 t

h
e

fl
11

m
ea

ns

m
ea

n;

s
th

at

It
«•c

. e c 2 »
Sis
r9 2iS

h
II ÜHtM a«

1—.f^r-^ OS •-•e«*« ♦ O

I -62-

I
■

r
i
i.
i

t
t
i
i
i

i
•

Examples:

Let L be a logical array with extent (9)
S be a logical array with extent (9,2), and
T be a logical scalar.

Valid logical assignment statements:
L« T

S-[1,4,9] .CROSS.[2]
S(*#I)-L.DIFF.[4](9)
T - .TRUE.
S(J#*) = .FALSE.

Invalid logical assignment statements:

8 ■ C 1,4,3] (incompatible extent)
I* ■ Cl#4] (incompatible extent; use

[1.4] (9) Instead)
L " 3'5 (incompatible data type)

8.1.1.3 GO TO Assignment Statement

A GO TO assignment statement is of the form:
ASSIGN k TO i

where k is a statement label and 1 is an integer scalar variable name.
After execution of such a statement, subsequent execution of any assigned
GO TO statement using that integer scalar variable will cause the state-
ment identified by the assigned statement label k to be executed next, provided
there has been no intervening reassignment of the variable. The statement
label must refer to an executable statement in the san.a program unit in
which the ASSIGN statement appears. Once'having been mentioned in an
ASSIGN statement, as integer scalar variable may not be referenced in any
statement other than an assigned GO TO statement until it has been re-
assigned a numeric value.

Example:

ASSIGN 32 TO KZ At this point the label 32 Is assigned
to the Integer scalar variable named KZ.

GO TO KZ, (451,7,32,110) At the execution of this statement control
is transferred to the statement labelled 32.

-63-

i
i

6.*.2 Control Statemgnt«

There are seven types of control statements:
1) GO TO statements
2) IF statements
3) CALL statement
4) RETURN statement
5) CONTINUE statemer*
6) Prograr.i control statements
7) Loop statements

The statement labels used in a control statement must be associated with
executable statements within the same progran unit in which the control
statement appears.

S.l.2.1 GO TO Statements

There are three types of GO TO statement:
1) Unconditional GO TO statement
2) Assigned GO TO statement
3) Computed GO TO statement

8.1.2.1.1 Unconditional GO TO Statement

An unconditional GO TO statement is of the form:
GOTOk

where k is a statement label. Execution of this statement causes the
statement identified by the statement label k to be executed next.

Example:

GO TO 1066

6.1.2.1.2 Assigned GO TO Statemant

An assigned GO TO statement is of the form:
GOTOl^tkj.k, k) 1 « n

-64-

i
I
I
I
I
I

where , js „ toteger scalar ^^^ re ^
labels. The us« nf th. _ . ■ "no me it s are statement

-^i. rerrrchTr:r::rs^rrfere-

-ent ».^„T^lTLT; 0f an aSSl9ned G0 T0 ^"^ *«
•n ASSIGN stale: T^:Tgne1 Z ** PreVl0US -«"« »'
parenthesized list and sul Sta,emen, ^ " *«

bv«.. states j'.r.r ::rrnr
uses ,he 8ta,eraent—

Example;

GOTO CHOICE, 023,5813,2235,5792,141)

A computed GO TO statement is of the form;
GOTO^2 v^i

where the k's are statement labels and 1 i* *„ i ♦

tt.. 1S)S„ ThlS 8ta,en,en, l8 denn«, »»'V for value, of , .uch

Example;

1-3

GO TO (3,17,45,4.9),!
Control is transferred to the statement labeled 45.

6-i-2-2 IFStatempntc

There are three types of IF statement:
1) ArithmeUcIF statement
2) Logical IF statement

3) Two-branch IF statement

-65-

1

6.1.2.2.1 Arithmetic IF Statement

An arithmetic IF statement is of the form:

IF(e)k1,lc2,k3

where e is a scalar expression of typo integer, double integer, real, or
double precision and the k's are statement labels. The arithmetic IF is
a three-way branch. Execution of this statement causes evaluation of
the expression e following which the statement identified by the state-
ment label kj,^ . .or k3 is executed next as the value of e is less than
zero, .^ero, or greater than zero, respectively.

Examples:

VALUE = 3.7
IF(VALUE)J6,1,42

Control transferred to:

42

I
I
I

VALUE - -43E+17
IF(VALUE)96,1,42 96

VALUE = 0.0
IF(VALUE)96,1,42 1

6.1.2.2.2 Logical IF Statement

A logical IF statement is of the form:
Ir(e)S

where e is a logical expression and S Is any executable statement except
a DO# DO FOR ALL, or another logical IF statement. Upon execution of
this statement the logical expression e is evaluated. If tha value of e
is false, statement S is executed as though it were a CONTINUE statement.
If the value of e is true, statement S is executed.

Example^:
Valid logical IF statements:

IFCA .LE. 0.0) GOTO 17
IF (FROST) ALPINE = TUNDRA
IF(SINCX) .GT. .5) Y(D = COSfc)
IF(P .OR. Q) IF (L+M) 4.2,7

-66-

■

-

•

I
I
I
I
I
I
I
i

filväM logical IF statements:
IF(4+I) GO TO 405 (A+J lcs nnf a 1ä , ,

1*T1 is not a logiral exore^cinn)
Tft .LT. B, „ (P .NE. 2, : =AtB (ob)ect of IF must not~^

logical IF)

6-1'2-2-3 Two-branrh IF Statempn»

A two-branch IF statementls of the form-
IF(e)kvk.

where e Is a lo,l«l scalar eXpres.1o„ and k, and fc. are satemen, iabels

I« asl r6"! Idenüüed ^ ,he S,atemen, ,abel kl " k2 's «^ nex as the value of e Is true or false, respe .lively.

mple;

IF(A.LT.B)43,80

6.1.2.3 GALT.. StatAmAn»

A CALL statement Is one of the forms;

or
CALL s(a1,a2....fa)

GVLL s

where s Is .he name of a subroutine or subroutine entry point and the a's
a« eotual arsuments (7.1.2). Th, .„„.p^ of executlon o(, CA1L ^

references «.e deslgnetec: subroutine or subroutlne entry point. Suche
«ference causes execuUon to proceed with the first exeoutabl. statement

ENlRy statenem, respectively. Return of control from the deslgnatad
subrouUne completes execution of the CALL statement.

Examplftsr

CALL MEOSH.MA'X)

CALL OUS(SINC0*P-COS00*Q)
CALL IOPE

-67-

6.1.2.4 RETURN Statement

A RETURN statement ii one of the forms:
RETURN

or

RETURN 1

where i Is a scalar integer expression. The RETURN statement marks
the logical end of a main program or a function or subroutine subprogram.
The second form may only be used in a subroutine subprogram.

Execution of this statement when it appears in a function sub-
program causes return of control to the current calling program unit. At

this time the value of the function is returned a s the value of the function
reference.

Execution of this statement when it appears in a subroutine sub-
program causes return of control to the current calling program unit. If
the first form is' used control is transferred to the first axecutable state-
ment which follows the corresponding CALL statement. If the second form
Is used, the expression i is evaluated and control is returned to the Jth
alternate return, where j is the value of i. If the number of alternate
returns Is? n then j must be greater than zero and less than or equal to n.

Execution of this statement when it appears in a main program is
equivalent to the execution of a STOP statement.

6.1.2.5 CONTINUE Statement

A CONTINUE statement is of the form:
CONTINUE

Execution of this statement causes continuation of the normal execution
sequence.

6.1.2.6 Program Control Statements

There are three program control statements:
1) STOP statement
2) PAUSE statement
3) END statement

-68-

i
■

1
_1

I
6'1-2.6.1 STOP Statem^nf

A STOP statement Is one of the forms:
STOPn

or

STOP

Where n is an Integer constant. Executton of this statement causes

termination of the executable program. At that time n, if specified is
output. '

6-1 2.6.2 ' PAUSE StatRmpnt

A PAUSE statement is one of the forms:
PAUSE

or

PAUSE n
or •

PAUSE h'

where n is an integer constant and h is a Hollerith constant. This state-
ment is provided for compatability only and in IVTRAN has the same effect
as a CONHNUE statement. In other processors, this statement would
cause cessation of the program in such a way that resumption would be
at the discretion of the operator.

6-1.2.6.3 END Statempnt

The END statement is one of the forms:
END

or

END s

where s is the name of the subprogram of which the END statement is a
pait. The END statement must be the last statement, physically, in any
program unit. The complete END statement, including the subprogram
name, must appear on a single Un,; it may not be continued onto a
second line through the use of the continuation field.

I
-69-

•-

'

1

Execution of the END statement Is equivalent to the execution
of a RETURN statement In a function or subroutine subprogram. It ls

equivalent to the execution of a STOP statement In a main program.

6.1.2.7 Loop Statements

There are two types of loop statements;
1) DO statement
2) DO FOR ALL statement

£•1.2.7.1 DO Statement

A DO statement Is one of the forms:

or
DO n 1 = m1.m2,m3

DO n1 = m^m

where:

1) n is the statement label of an executable statement. This statement
called the terminal statement of the DO loop, must physically follow and
be in the same program unit as the DO statement. The terminal statement
may not be a GO TO of any form, arithmetic IF. two-branch IF, RETURN,
STOP, or another DO statement.

2) 1 is a scalar Integer variable name; this varlab.le Is called the control
variable.

3) mv called fl.e Initial parameter; mr called the terminal parameter; and
■V called the Incrementation parameter, are each either in Integer constant
or an Integer scalar variable name. If the second form of the DO statement
is used so that 11,3 is not explicitly stated/a value of one is Implied for
the incrementation parameter. At time of execution of xhe DO statement,
m1.m2, and m3 must each be greater than zero.

Associated with each DO statement is a range that is defined to
be those executable statements from and including the first statement
following the DO. to and including the terminal statement associated with
the DO. In case the range Includes another DO statement, the range of the
contained DO must be a subset of the containing DO.

-70-

■

I
I

A DO statement Is used to define a loop. The action succeeding
execution of a DO Jtatement is described by the following six steps:

1) The control variable is assigned the value represented by the initial
parameter. This value must be less than or equal to the value represented
by the terminal parameter.

2) The range of the DO is executed.

3) If conüol reaches the terminal statement, then after execution of the
terminal statement, the control variable of the most recently executed DO
statement associated with the terminal statement is Incremented by the
value represented by the associated incrementation parameter.

4) If the value .of the control variable after incrementation is less than or
equal to the value represented by the associated terminal paramenter, then
the action described starting at step 2 is repeated, wish the understanding
that the range in question is that of the DO whose control variable has
been most recently incremented. If the value of the control variable is
greater than the value represented by its associated terminal parameter,
then the DO is said to have been satlsifed and the control variable becomes
undefined.

5) At this point, if there wero one or more other DO statements referring to
the terminal statement in question, the confol variable of the next most
recently executed DO statement is Incremented by the value represented
by Its associated incrementation parameter and the action described In
step 4 is repeated until all DO statements referring to the particular term-
ination statement are satisfied, at which the first executable statement
following the terminal statement is executed.

6) Upon exiting from the range of a DO by a transfer of control as opposed
to satisfying the DO, the control variable of the DO Is defined and Is equal
to the most recent value attained as defined in the preceding paragrapte.

-71-

- «f«SI

-

11

I

I
I

An alternative but equivalent definition of the execution of the
DO statement Is the following:
1) Replace each DO statement of the form:

DO n 1 = mi»"*-

by
DO n 1 = m1/m2,m3

where m^ Is the integer constant 1.

2) Replace, starting with the innermost DO, each DO loop of the form:
DO hi = m^m^m-

range
n terminal statement
by

lorn,

k CONTINUE

range, with all occurences of n replaced by nl
nl terminal statement

1 «= 1 + m«
IF(i .LE. m2) GOTOk

n 1 « ?

where nl and k are labels not appearing elsewhere in the program unit
and ? is an integer constant of unknown value.

Both of the above definitions permit transfer out of the range of
the DO and subsequent re-entry by transfer of control to a statement
within the range of the DO loop. The statements executed between the
transfer out of the range of the loop and the subsequent re-entry are
called the extended range of the DO. Control may not be transferred into
the range of a DO except through the execution of the DO statement or
through the use of an extended range.

The control variable, terminal parameter, and incrementation
parameter may not be assigned values within the range or extended range
of a DO loop.

-72-

mmammtmmmmmi i i

/
/

•**"■' jg

I
I
I
I
I
I
I
I
I

Examples:

Valid DO Icxjps:

1) D0 3 K= 1,9,2

3 A(K)=B(K)*2.0

Is equivalent to:

K = 1

It CONTINUE

nl A(K) =B(K)*2.0

K = K+ 2

IF (K .LE. 9) GOTOk
K- ?

or to:

A(l) =B(1)*2.0

A(3) =B(3)*2.0

A(5) = B(5)*2.0

A(7) =B(7)*2.0

A(9) =B(9)*2.0

2) NI = N-1

DO 41= 1,N1
11»:+ 1

D0 4 J = I1,N

IF(A(D -LE. AC)) GO TO 4
T«A(1)

AtO^AC)
AO) «T

4 CONTINUE

-7j-

Is equl"alent to:
Nl = N- 1
1=1

kl CONTINUE
11 = 1+ 1

J = I1
Ic2 CONTINUE

IF(A(D .LE. AC) GOTO nl
T=A(I)

A(I) =AÖ)
A(r) = T

nl CONTINUE

J-J+ 1

IF(J .LE. N) GOTOk2
n2 J= ?

1 = 1+1

IF 0 .LE. Nl) GOTO kl
4 1= ?

Invalid DO loops:
1) 3 CONTINUE

A(1)«I
D03 1= 1,10

(Terminal statement must follow DO)

2) DOS 1= 1,N
D04 J= 1,M

3 A(I) = I
4 BO) = J

(Inner DO mast be completely contained
In outer DO.)

3) GO TO 7

D0 4 1= 1,N
A(1)»I

7 B(I) = I-1

4 CONTINUE

(Transfer Into DO not permitted except
as part of an extended range)

4) DOlI=0.N
1 Ad+l) - I

(DO parameters must be positive
non-zero integers)

-74-

i
.

I
I

5) DOl2 j = :o#i
'2 AO+1) = A([)

6) DOl5KP=N#M,2
A(KP) =SIN (B(KP))
KP=KP-1

15 AtKP) - COS (BOCP)

(Initial parameter must not exceed
final parameters)

(DO parameters and Index may not
be modified within loop)

6.1.2.7.2 ßQjüR^LLStatement

A DO FOR ALL Statement Is of the form:
DO k FOR ALL W/s

where:

ollow «d be 1„ xh. MM pro,ram „„ „ the D0 ^ ^ „,

2 1 1. an tateger scalar variable name called a cent..,! Index.

3) . 1. an one-dln,e„.,onal lo,ic.l array expre.elon •« an extent (d).

Aeaoclated wlü, the DO TOR AU 1. a range deüned to be thoee
«ecutable .tatement, follo.to, the DO FOR ALL from and Inching the

7*ZTt
ment f01l0Wln'tile ^ roR *",o and tac1^ ^ «2- •tatement associated with the DO FOR AU.

It is not penutted to transfer control Into the reng. of . DO FOR AU
fcop exce* by executing a DO FOR AU statement. ,. is not pennmL to

«rsn fe ou, of the range of a DO FOR AU loop except by executing the
.«minal statement which allow, flow to p^ceed to the first «ecutaWe
statement following the loop. "wcuteoie

A DO FOR AU statement is used to specify that certain assignment
statement. wlthln lts nnQe .„ „ „, ^^ ^ ^ ^ ^ ^ -I—«

peral el This .et of value., called the index .et, is defined to be the
set of integers 1 such that .(1) i. true and 1 slad.

The range of a DO FOR ALL may not contain another DO FOR ALL
or any array expressions. The control Indices may not be used In any

«tatement within the range of the DO FOR ALL loop, except as outlined

-75-

t

I
In the following paragraphs. Otherwise any statement permitted elsewhere
in the procedure part of the program Is permitted, and has Its usual
Interpretation.

Within a DO FOR ALL range the control Indices may appear only
In DO FOR ALL assignment statements. A DO FOR ALL assignment state-
ment Is one of the following forms:

p = e
or

IFMIp = e
where

1) p Is an array element reference with exactly one subscript of the form-
I

or 1+ C
or I- c
where I Is the control Index and C Is an expression Independent of I.
2) e and f are each an expression which may or may not depend upon I.
Within e and f any array element references are either of the form 1) above
or are Independent of I.

Execution of a DO FOR ALL assignment statement causes parallel
assignment of the expression e to the array element reference p for all
values I in the index set. The computation of the expressions e and f
makes use of values of p in effect immediately before execution of the
statement. If the second form of the statement is used, assignment Is
made only for those values of I in the index set for which f(1) - true

0

Examples:
Valid DO FOR ALL loops:

1) DO lrORALL(I)/[2...99]
1 AO) «=A(I-1)*A(I+1)

2) DO46FORALL(K)/Cl,3...100]
46 IF (VAROO .LT. 0.^) VAROO - -(VAR(K)

-

3) DO 77 FOR ALL C)/B(M,*.N)
BIGO) ■ 0.0
D0 77I= 1,M

77 IF(A(I,J) .GT. BIGO)) BIG(J) -Attj)

-76-

•

/
I

I

I

I

Invalid DO FOR ALL loops:
1) DO 64 FOR ALL (L)/ [1... 100]

DO 64 FOR ALL (M)/ [1... 100]
64 A(L,M) = Btt^M)

DO TOR ALL loops may not be nested.

2) DO 10 FOR ALL (IZ)/ LARR
10 A(1Z,*) =B(M2)

A DO FOR ALL loop may not contain array expressions.

3) DO900 FORALL (I)/[1...40]
900 A(2*D =A(I+40)*I

A DO FORALL Index must be of the form I,I+C, or
I-C when used In a subscript. 2*1 Is not of one of
these forms.

4) DO 1971 FOR ALL (D/P
1971 A(I#D =0.0

Only a single subscript In an array reference may
dopend upon I.

5) DO 515 FORALL (I)/Q
IF(A(J)) 2,2,1

2 A(J) = 0.0
GOTO 515

1 A(J)=A(J)/B(I)
515 CONTINUE

A DO FOR ALL Index may not appear In any statement
except for a DO FOR ALL assignment statement. The
use of J In the arithmetic IF statement Is therefore
illegal.

6) DO 1PORALL(D/[1...50]
1 A0) « 8(1)

The left-hand side of a DO FOR ALL assignment state-
ment must use the DO FOR ALL index.

-77-

I

t
i

6.1.3 Input/Output Statements . -

There are three types of input/output statement:
1) READ and WRITE statements
2) ENCODE and DECODE statements
3) Auxiliary input/output statements

The first type consists of the statements that cause transfer of
records between files and internal storage. The second type consists
of statements which cause conversion of data within internal storage.
They are classed with the input/output statements because the conversion
they perform is identical with that performed for formatted READ and
WRITE statements. The third type of statement consists nl the BACKSPACE,
REWIND« and FIND statements which provide for positioning a file and
the ENDFILE statement which provides for demarcation of an external file.

The forms of the input/output statements are given In Table 7.

6.1.3.1 Transmission Options

There are three transmission options for use in Input/Output
statements:

1) Record input/output
2) Formatted input/butput
3) Namelist input/output

The transmission options specify the manner in which data is transformed
during transmission.

6.1.3.1.1 Record Input/Output •

For record input/output, data is transmitted without being trans-
formed. Each input or output statement causes a single record to be
transmitted. Each record consists of a string of data values in internal
representation.

Execution of a record READ statement causes a record to be read
from the specified input unit, and If an iQput list is specified, the values

-78-

/

TABLE 7: INPUT/OUTPUT STATEMENTS

READAVRlTJi Statements

Type of Type of
Recess Transmission Form of READ Form of WRITE

sequential record READ(u)

READ(u,END»g)

READ(u,ERR=h)

• READ(u, END=g. ERR=h)

READ(u,ERR=h,END=g)

READ(u)K WRITE (u)L

• READ(u,END=g)K

READ (u. ERR=h)K •

READ (u, END=g, ERR=h)K
• READ(u # ERR=h. END=g)K

formatted READ(u#f)

READ(u.f,END=g)

READ(u,f,ERR=h)

READ(u.f,END=g.ERR=h)

READ (u, f, ERR«h, END=g)

READ(u,f)K

READ(u<f,END=g)K

READ(u.f,ERR=h)K

READ(u,f,END=g,ERR=h)K

READ (u. f, ERR=h, END=g) K

WRITE(u,f)

WRITE(u,f)K

namelist READ(u,n)

READ(u.n.END=g)

READ(u.n,ERR=h)

READ(u, n, END-g, ERR=h)

READ(u t n, ERR=h, END-g)

WRITE (u,n)

-79-

Table 7 (Continued)

Type of
Access

Type of
Transmission Form of READ Form of WRITE

direct record READCu'r)

READCu'r^RR^)

READfu'rlK WRITEfu'r)!.

• READCu'r.ERR^K

formatted READCu'r.f)

READ (u'r. f.ERR=h)
WRITE (u'r, 0

READ^'r.flK WRITE (u'r, f)L

READfu'r.f.ERR^K

namelist not permitted
•

ENCODE/DECODE Statements

ENCODE(c,f,v) DECODE(c#f,v)

ENCODE(c.f,v)K DECODE (c,f,v)L

Auxiliary Input/Output
■

REWIND u

BACKSPACE u
FIND u'r •

ENDFILE u

Notes; ■

1) u is an integer scalar expression which designates the input/output
unit (file) to be used.

2) g is the statement label for an executable statement in the same
program unit as the READ statement in which it appears. Transfer will
be made to that statement if the end of the file is detected while reading.

■

Table 7 (Continued)

3) h Is the statement label for au executable statement In the same
program unit as the READ statement in which it appears. Transfer will
be made to that statement if an error is detected while reading.

4) f is either the label of a FORMAT statement or the name of a
singly-dimensioned array containing format information.

5) n is the name of a namellst established in a NAMELIST statement.

6) r is an integer scalar expression which specifies the record number
for direct access input/output.

7) c is an Integer scalar expression which gives -he number of
characters in v.

8) v is the name of a singly-dimensioned array containing a character
string.

9) K is an input list.

10) L is an output list.

-81-

.

read are assigned to the sequence of elements specified by the list.
The sequence of values required by the Input list may not exceed the
sequence of values from the record.

Execution of a record WRITE statement causes a record consisting
of values obtained from the output list to be written upon the specified
output unit. If the record did not previously exist, a new record is
created.

Examples:

READ (3) A(D,8,0(1,*)

WRITE(UNITS) A(I,*)*B(M),I.3,SINCE)

6.1.3.1.2 Formatted Input/Output

Under formatted Input/Output, data is transmitted under control of
a FORMAT statement (6.2.3) which specifies the manner in which internal
data is to be transformed from or to a character string respectively. Each
input/output statement causes one or more records to be transmitted.
Each record consists of a string of characters and appears on a separate
line when printed.

Execution of a formatted READ statement causes input of one or
more records from the specified unit. The information is scanned and
converved as specified by the indicated format statement or fomat array.
The resulting values are assigned to the elements specified by the list.

Execution of a formatted WRITE statement causes the values
specified in the output list to be converted according to the format spec-
ification and written as one or more adjacent records on the specified unit.

Examples:

77 FORMAT(4E14.4)

READ(4,77)A,B,C,D

WRITE.(7,77)A+B,B-0/0*D,D**A

-82-

6.1.3.1.2.1 ENCODE and DECODE Statements

I
I
I
I
I
[
I
I

The ENCODE and DECODE statements transmit data between an
Input/output list and the first c characters of a singly-dimensioned
array variable under control of a format statement or format array.

The ENCODE statement converts data from the singly-dimensioned
array variable into internal form and assigns the converted values to
the input list items. The input list and format statement must not
specify that more characters be converted than are specified in the
character count c. If fewer characters are called for than are spec-
ified by c, the remainder are ignored. The character slash in the
FORMAT statement has no effect for ENCODE.

The DECODE statement converts data in internal fonn from the
output list to a character string which is placed in the singly-dimensioned
array. The input list and format statement must not specify that more
characters be converted than are specified by the character count c;
If fewer characters are called for than are specified by c, blanks are
placed in the remaining character positions. The character slash In
the FORMAT statement has no effect for DECODE.

L
L
I
I
I
I
t -83-

I ,1

■ 6.1.3.1.3 Namellst Input/Output

Under nameUst input/output, data is transmitted under control
of a NAMEUST statement (6.2.3) which specifies the names of data to
be transferred. Both the name of the data and Its value appear In the
character string which Is read from or written to the Input/output unit
Each intut/output statement causes one or more records to be transmitted
Each record consists of a string of characters and appears on a separate
line when printed.

6.1.3.1.3.1 Namellst Input

Input data must be In a special form In order to be read using a '
NAMELIST list. The first character of each record to be read is ignored
and will usually be blank. The second character in the first record of a
group of records must be a $ or an & followed immediately by the
NAMELIST name. Tha NAMELIST name must be followed by a blank and
must not contain any embedded blanks. Ihis name is followed by data to
be read and converted. The end of the data group is signalled by a $ or
an & either in the same record as the NAMEUST name, or as the second
character of any succeeding record. The remainder of the record following
the terminal $ or & is ignored. Data items must be separated by commas
and be of the following form:

S = K
or

Kl'K2","Kin

where S is a scalar variable name or an array element reference, A Is an
array variable name or array cross-section, and each of the K's is a con-
stant of integer, double integer, real, double precision, complex, double
complex, or logical data type. Logical constants may be written in the
form T, .T., or .TRUE, and F, .F., or .FALSE. A series of r Identical
constants may be represented by r*k where r is an Integer constant and
K Is the repeated constant. Logical, complex, and double complex con-
stants must be associated with variables of identical type. The other
types of constant {integer, double Integer, real, double precision) may be
read into any type of variable (except logical, complex, and double complex)
and will be converted to the type of the variable.

-84-

The variable names specified In the input data must appear in the
NAMELIST list, but the order is not significant.

Embedded blanks are not permitted in constants. Trailing blanks
after integers and exponents are treated as zeros.

Example;
REAL A(3)
LOGICAL EE
COMPLEX in(5)

NAMEUST / ROSE/ A#EE,in

READ (4, ROSE)
could read input data of the form:*

A&ROSEAA=3,5.6.4,EE=.TRUE.,in«4*{1.3#-4.2).(0.,0.)
A &END

6.1.3.1.3.2 Namelist Output

When a namellst WRITE statement is executed, all variables and
arrays specified in the associated NAMEUST statement are output. An
array is output with its leftmost subscript varying most rapidly. The out-
put data is written so that the data fields are large enough to contain all
significant digits and so that the output can be read using namellst input.

6.1.3.2 Access Options

There are two access options for use in Input/output statements:
1) Sequential access
2) Direct access

* The character A represents the character blank.

I -85-

I
I
I
[
[
c

L
t
I
L
I

i

6.1.3.2.1 Sequential Access

Sequential Access files permit records to be written and read
only in sequence from first to last. A sequential READ or WRITE statement
processes the record or records which immediately follow the record last
processed.

In addition to sequential READ and WRITE statements, the REWIND,
BACKSPACE and ENDFILE statements may be applied to sequential files.

The REWIND statement causes a subsequent sequential READ or
write statement to read from or write to the first record of the specified
unit. Not all units can be rewound (e.g., printers, card readers). For
these units the REWIND statement is ignored.

The BACKSPACE statement causes the .specified unit to backspace
one record. If the unit is already at its initial point, the statement has no
effect. If the unit (e.g., a teletype) can not be backspaced, the statement
has no effect.

The ENDFILE statement defines the end of a file of data on a unit
by writing a unique record called an end-of-file record.

6.1.3.2.2 Direct Access

Direct access files permit records to be written and read in random
order. A direct access input or output statement processes a specified
record and those records which immediately «follow it. In addition. It makes
available the record number of the record which follows the last record
processed, and so permits a form of sequential processing of records as
a special case.

The DEFINE FILE statement (6.2.3) is required for each direct access
unit. In it are defined the characteristics of the unit and an associated

-86-

I Integer variable which Is set to the number of the record following that
last transmitted on the conclusion of each direct access READ or WRITE
statement, and Is set to the number of the record found at the conclusion
of a FIND operation.

The FIND statement overlaps record retrieval from a direct-access
unit with computation In the program, thereby Increasing execution speed.
The program has no access to the record that was found until a READ
statement for that record is executed. (There Is no advantage In having
a FIND statement precede a WRITE statement.)

6.1.3.3 Input/Output Lists

READ, WRITE, ENCODE, and DECODE statements permit the use
of an input/output list to specify th*» data values to be written or the data
locations into which data is read.

6.1.3.C.1 Oiuput Lists

An output list element is a
1} scalar expression
2) array expression
3) a parenthesized output list
4) an output implied DO of the form:

(L, 1 « m1,m2)
or

(L, 1 » m1,m2,m3)

where L is an output list and 1 and the m's.are the implied DO control
variable and parameters, respectively.

An output list is one or more output list elements, separated by
c nmas.

•

-87-

■

I
I

Examples;

A,C(I#*J)

A.BO J), SIN 00
(A(D,I=1.6)

((BÜJ)J=1/2)#I=1#2)
3.5,5.7,-7.9.2**12

(^(1)^(2)^(3)^(4)^(5)^(6))
(=B(1,1),B(1,2)#B(2,1),B(2,2))

6'1'3.3.2 Input Llstg

An Input element Is a
1) scalar variable name

2) array element reference
3) array variable name

I) array cross-section reference
5) a parenthesized input list
6) an input implied DO of the form:

or
(L , 1 «m1,m2)
0« , i = m1,m2,m3)

nZulT1,,pu,""and'and ^ ^ 'n •• w °° -w variable and parameters, respectively.

An input list is one or more input üst elements
separated by commas.

(-T(1J),T(3J) ,1(5,1))

Examples;

X(*,*,I0, Y, 2(1)
(T(IJ),I.1#5,2)

6*1»4 Debug StatAmon»«

The debug statements enable the user to locate errors in a IVTRAN

zzrzi n* T9 8tAtements provide for—^ -^ program, tracing flow between programs, displaying the value, of variable,
and array., a„d checklng ^ ^^^ of 8ub8crtpts variable.

r !•

-88-

The debug statements consist of a DEBUG specification statement,
an AT debug packet Idenüflcatlon statement, the TRACE ON and TRACE OFF
statements, and the DISPLAY debug output statement.

Debug statements are placed after the body of a program and
before the END statement. This permits easy removal of the debug state-
ments when debugging Is complete. If debug statements are present they
must appear In the following order:

1) DEBUG statement

2) One or more debug packets (If any) each consisting of an AT debug packet
Identification statement, followed by one or more executable debug state-
ments (TRACE ON, TRACE OFF, DISPLAY) and other IVTRAN statements
(executable, NAMELIST, FORMAT, and DATA statements.)

The program unit being debugged may not transfer control to any
statement In a debug packet; however, the statements In the debug packet
may transfer control to the program or return from It.

6.1.4.1 DEBUG Statement

The DEBUG statement. Is of the form:
DEBUG S1,S2 Sm

where each S Is one of the debug specifiers:

1) UNIT(u), where u is an integer constant specifying the output unit for
debug output. If this option is not specified, debug output is placed on
a standard output unit.

2) SUBCHK or SUBCHK (m1,m2 m^), where the m's are array names.
If this option Is specified array subscripts are checked for validity. If
the first form is used all array references are checked. If the second
form is used, only references to the specified arrays are checked. If this
option is not specified, no subscripts are checked.

-89-

l

3) TRACE. This specifier must appear if tracing is desired. If this
option is omitted, no tracing will take place. Even when this option is

TtZ TRACE ?N Stdtement mUSt ** CXeCUted bef0re **<** «» commence,
4) JNIT or INlKn^^...^), where each mis a variable or array name
When this option is specified, variables and array values are output when
a statement which could modify its value (assignment. READ, and DECODE
statements) is executed. If the first form is specified, all mooificatlons
are displayed. If the second form is specified only modifications to
the named variables and arrays are displayed. If this option Is not
specified, no modifications are displayed.

5) SUBTRACE. If this opdon is specified', the subprogram name is dis-
played when the subprogram is entered and the message "RETURN" is '
displayed when control returns to the calling program.

Each of the debug specifiers may appear at most once. The debug
specifiers may appear in any order.

Example:

DEBUG TRACE, SUBTRACE, UNIT(4)

6'1'4.2 AT Statemftnt

An AT statement is of the form
AT k

where k Is the statement number of an executable statement In the same
program unit. The AT statement identifies the beginning of a debug packet
and indicates the point In the program at which the debug packet Is to be
activated.

When control reaches the statement labelled k. control Is trans-
ferred to the first executable statement following the AT statement. After
the last statement of the debug packet is executed (provided it does not
transfer control out of Itself) control returns to the statement labelled k,
which is then executed.

-90-

■

Example;

1 ABR = ACAD*AB+RA
2 CALL DJINN (ABR)

DEBUG
AT 2
DISPLAY AB,ACAD,ABR,RA
END

The assignment statement Is executed first, followed by the DISPLAY
statement ai d then the CALL statement.

6.1.4.3 TRACE ON Statement

The TRACE ON statement is of the form:
TRACE ON

The TRACE ON statement initiates the display of statement flow
by statement number. Each time a labelled statement is executed, a
record of the statement number is made on the debug output unit. This
statement has no effect unless the TRACE specifier was used in the
DEBUG statement. For a labelled statement which has a debug packet
associated with it, the actions within the debug packet are executed before
the label trace is output. Tracing continues through each level of sub-
program call until a TRACE OFF statement is executed, provided the sub-
program in question has the TRACE option specified in a DEBUG statement.

6.1.4.4 TRACE OFF Statement

The TRACE OFF statement is of the form:
TRACE OFF

Execution of the TRACE OFF statement suspends program flow
tracing initiated by the TRACE ON statement.

-91-

,;.

tß

i

6'1-4.S DISPLAY Statement

The DISPLAY Statement Is of the form;
DISPLAY m1,m2 mk

whf e each of the m's Is a non-dummy variable or array name. H e
DISPUY statement outputs the values of the named variables and arrays
on the debug output unit.

The effect of the DISPLAY statement Is similar to the followlna
two statements:

NAMELIST /m/m1.1112 nik

WRITE (u,m) " ■

where m Is a namehst name not used elsewhere In the program and u
Is the debug output unit number.

Example:

DISPLAY PDA^DQ^DL

6'2 Specification Statements

There are five types of Specification statement;
1) Data attribute declaration stit^ments
2) DATA statement

3) Input/output specification statements
4) Subprogram specification statements
5) FREQUENCY statement

6,2,1 Data Attribute Declaration Statement«

There are seven types of data attribute declaration statement:
1) IMPLICIT statement
2) Type statement
3) DIMENSION statement
4) COMMON statement
5) OVERLAP statement
6) EQUIVALENCE statement
7) DEFINE statement

-92-

,

I

I
I

The extent of an array must be specified by using an extent
specifier In a type statement, a DIMENSION statement, or a COMMON
statement. The extent specifier is written:

<dl'd2 d„)

where the d's are the dimensions of an n-dlmenslonal array.

The type of a variable may be specified through either the type
statement, the IMPLICIT statement, or the use of the built-in type
convention.

L
t

Relations between different variables are specified through the
use of the EQUIVALENCE, OVERLAP, and DEHNE statements.

6'2.1.1 IMPUCIT Statement

The IMPLICIT statement is written in the form:
IMPUCIT •,.■,,...,■ 1 * n

where each of the s's is an implicit specifier of the form:
t(Ll'L2 V

where each t is one of the type declarators given in Table 8 and each of
the L's is a single letter or a range of letters denoted by a pair of letters
separated by a hyphen (minus sign). The first letter In a range must
precede the second in the alphabet. The same letter may only be specified
once within an implicit statement.

The IMPLICIT statement must be the first statement following the
subprogram statement if present. There can be at most one IMPUCIT
statement in a given program unit. The IMPUCIT statement declares the
data type of variables within the program unit by specifying that variables
beginning with the designated letters are of the designated type.

-93-

-

I
TABLE 8; TYPE DECLARATORS

Data Type

integer

double Integer

real

double precision

complex

double complex

logical

Type Declarators

INTEGER, I, INTEGER*4

DOUBLE INTEGER, DI, INTEGER*8

REAL, R, REALM

DOUBLE PRECISION, DP, DOUBLE, REAL*8

COMPLEX, C, COMPLEX*8

DOUBLE COMPLEX, DC, COMPLEX* 16

LOGICAL, L

Example;

The IMPLICIT statement:

IMPLICIT INTEGER(I-N),REAL(A-H,0-Z)

defines the same types for undeclared variables as the built-in typing
convention.

The statement:

IMPUCIT DOUBLE COMPLEX(A-F),LOGICAL(X,Z)

specifies that variables beginning with the letters A,B,C,D,E# and F are

to be of type DOUBLECOMPLEX and that variables beginning with the

letters X and Z are to be of type LOGICAL unless they appear in a type

statement. Variables which begin with other letters are typed according
to the built-in typing convention.

The statement:

IMPUCIT DI(A-Z), R(K)

Is invalid and should be written:

IMPLICIT DI(A-J,L-Z) ,R(K)
instead.

-94-

1

I
I
I
I
I

"■

6*2*1'2 Type Statempn»

The type statement Is of the foim:

* 8l'S2 sin

where t is one of the type declarators given in Table 8 and each of the
s s is a type specifier cf one of the forms:

m
or

m e
where . is » „riab.e. array or fuictlon mme ^ , „ ^ ^^ ^^

The type ,M,eme„, declares eech m to be of den type t .end to be

,. r,7 *,he at,ached exten,• "fresent- *" "~ ™y ZZt «-o« one type sMte-nent in , p^en, ^t. Typfn, tn . ^ statement

.?. r,,renCe ^ ,he bUUt '" tyPe co»™»«0'>s «* «hose estebUshed In an 1MPUCIT statement. «laousneo

Examplftgr

DOUBLE COMPLEX CO#NU,ND,RUM
INTEGER UNIT(40,30)/ITEM(100)
REAL FACT

DOUBLE PRECISION EXACT(133)
LOGICAL L(IOOOO)
DP M^Z

6-2-1-3 DIMENSION satta^

A DIMENSION statement is of the fom:

DIMENSION m1e1,m2e2 m^

where each m is an array or function name and each e is an extent

specifier. The DIMENSION stetement specifies that each » is an array
variable or array function with extent e.

Examples:

DIMENSION
DIMENSION

HERCM(90,55,90)

F(10),F1(4U0)/F2(40/10)

-95-

„nSW**»"

6.2.1.4 COMMON Statement

The COMMON statement is written In the form:
COMMON /b/s^.s,, s. /. .

where each of the b's Is an idenüfier representing a COMMON block
name or Is blank. If bj is blank the slashes may also be omitted. Each
of the s's is of one of the forms:

N
or

M e

where N is an array or scalar name, M is an array name, and e is an "
extent specifier.

The COMMON statement in IVTRAN is used to allow access to
variables used by more than one program unit. In IVTRAN a COMMON
block used by more than one program unit must be declared identically
except for names in each of the program units. A variable in a block of
COMMON may not be declared in two different program units unless the
following match in both program units:
1) Its position in the COMMON block
2) Its data type
3) Its extent

The same number of variables must be declared for a given COMMON
block in each program unit in which it is used. In addition, the OVERLAP
statement (6.2.1.5) when referring to COMMON variables and arrays must
cause identical overlapping to occur in each program unit.

If a COMMON block is declared more than once in a program unit,
the effect is the same as a single COMMON statement which contained all
the variables and arrays.

-96-

I

2)

3)

Examples;

Assume the following for allexamples;
IMPLICIT 1(1), ROD, DP(D), C(C), L(L)

MM COMMON statements:
1) In program unit 1:

COMMON /GLOBAL/ 11(1000).0,0(14,16)
In program unit 2:

DIMENSION 12(1000)

COMMON /GLOBAL/ I2,DI,CE(14,16)
In program unit 1:

COMMON /STOCK/ 11,12,13/BOND/CO,LL(lO)
In program unit 2:

COMMON /BOND/CQ /STOCK/ II,IJ
COMMON / BOND/ LE(10)
COMMON /STOCK/ U

In program unit 1 (see 6.2 .1.5 for OVERIAP statement);
COMMON /PLACE/ DP(10), R(100), 1(40)
OVERLAP((R), (DP,D)

In program unit 2:

COMMON /PLACE/ DPl(lO), R1(100), 11(40)
OVERLAP ((Il.DPlhOU))

lavaM COMMON statements;
I) In program unit 1;

COMMON /LAW/ R(10), Rl(10), 1(10,10)
In program unit 2;

COMMON /LAW/ R2(20), 11(100)
Items in COMMON must match exactly, not Just in length.
In program unit 1;

COMMON /NAIL/ R(40)
In program unit 2;

COMMON /NAIL/ 1(40)

Data types must match in corresponding items in COMMON.

2)

■

i
-97-

I

3) In program unit 1 (see 6.2.1.5 for OVERLAP statement):

COMMON /NOUN/ C(1000), R(SOO). 1(500)
OVERLAP ((C), (R,D

In program unit 2:

COMMON / NOUN/ C? (1000). Rl(500), 11(500)
Overlap statements, If present In one program unit, must be
present In all program units and must overlap Identical sets of
Items.

6-2.1.5 OVERLAP Statempnt

The OVERLAP statement is of the form:
OVERLAP (s^Sj sn)

where each s is an OVERLAP specifier of the form:
(Ei:

E2 V
and each E is an OVERLAP element of the form:

^l'1^'' * *'ni^
and each n is an array or scalar variable name.

Either all of the variables in an OVERLAP specifier must be in the
same COMMON block or none ox them may be in COMMON. The order in
which variables appear in OVERLAP elements is aribtrary. The order In
which OVERLAP elements appear in OVERLAP specifiers Is arbitrary. The
same variable or array name may appear atmest once In an OVERLAP
statement.

Each OVERLAP specifier indicates sets of variables (overlap elements)
which the compiler may cause to share storage. Each of the variables in
an OVERLAP element can share storage with any of the variables in any
other OVERLAP element in the same OVERLAP specifier. Variables declared
In the same OVERLAP element do not share storage with one another.

-98-

I
Example:

Assume that In the initial part of a program, an array C with
extent (100,100) is needed; in the final stages of the program C is no

longer used, but arrays A and B with extents (50,50) and 100, resoectively,
a/e used. Storage space can be saved by using the statement:

OVERIAP ((0)^,8))

vhlch permits the compiler to overlap part of the array C with part or
all of arrays A and B.

6-2.1.6 EQUIVALENCE Statement

In IVTRAN the EQUIVALENCE statement is of the form:
EQUIVALENCE E1'E2"- .»E n

where each E is an equivalence specifier of one of the forms:

or

or

f«rV--"s
n)

^l'a2',,"anJ

(e1,81,s2,...#sn)

where each s is a scalar variable name, each a is an array variable

name, and e is an array element of the form afc^ cj where
each c is an Integer constant and m is the dimensionality of" . All
of the variables in an equivalence specifier share the same storage.
Equivalence is mathematical equivalence If the items are of the same
data type and storage equivalence otherwise.

See the OVERUP statement (6.2.1.5) for broader storage equiv-
alence capabilltes and the DEFINE statement (6.2.1.7) for broader
mathematical equivalence capabilities.

BOt,™™"'8 SOal<,r Vart<,ble "" n0, aPPe<,r m0n tl»n ">« » "
K3UIVAIENCE statement. Only certain comblnetions of dete type. .«
permitted es Indicated In the lollowlnfl table:

«

-99- i

■

Data Tvoe
Integer
double Integer
real

double precision
complex
double complex
logical

Can be equivalenced to:
integer, real

double integer, double precision, complex
Integer, real

double integer, double precision, complex
double integer, double precision, complex
double complex
logical

I
I
I
I

At most one of the variables in an equivalence specifier may be
declared in COMMON. If the third form is used, only the array element
e may belong to a COMMON block.

Examples:

Assume for all examples the following, declaration:
IMPLICIT I(D ,01(1) ,R(R) ,DP(S), C(C) .DC(D) #L(I0

Valid EQUIVALENCE statements:
1) DIMENSION 1(2,2)

EQUIVALENCE (1(1,1)#IXX)#Ö(1,2),IXY)#(I(2,l)#IYJ0,tt(2,2),IYY)
DIMENSION 1(40) ,11(40) J(100) ,S(100)
EQUIVALENCE (I,R) ,(1,8)
COMMON /SENSE/I, S
EQUIVALENCE (JO, 10), (DII,011)
COMMON /WEALTH/1(100) #JK1
EQUIVALENCE (I(1),I1,ID,(JK,JK1J)

Invalid EQUIVALENCE statements:
1) EQUIVALANCE (I2,J2)

Incompatible data types.
COMMON / CAUSE/ 11 (4 0), 12 (4,10)
EQUIVALENCE (11,12)

a) Two arrays in COMMON may not be equivalenced to one another.
b) The extents of two equivalenced arrays must be identical.

2)

3)
4)

2)

-100-

■

■

3) COMMON /TIME/ LI - *
DIMENSION L2(100)
EQUIVALENCE (L2(19).L1)
A logical array element may not be equlvalenced to a COMMON
scalar.

4) COMMON /ROOM/ RING(41)
EQUIVALENCE (RING(1),RING(41)

Two array elements may not be equlvalenced to one another.
5) EQUIVALENCE (11,12). (12.13)

The same scalar or array name may not "appear twice in the same
or different equivalence statements.

6.2.1.7 DEFINE Statement

The DEFINE statement is of the form;

DEFINE a ^ = bj . a^ = b2 a^ = bk

where each of the a's is the array name of the item being defined, each
of the e's is the extent of the array, and each of the b's is a base item of
the form:

n(pl'p2 Pm1

where n is the name of the base array and each of the p's is a subscript
expression of one of the forms:

o
or

$k
or

$k+c

$k-c
where c is an integer constant and k is an integer constant between one
and the dimensionality of a.

The DEFINE statement declares one or more arrays with extent e
which are based upon arrays having storage. Each occuirance of a refer-
ence a (s^Sg,... sn) to a defined array can be replaced by an equivalent

-101-

-
■ y

-

reference n (tj,^, •• • »t^ to the base array, where each t. equals
Pj with $k replaced by s. .

Each $c from $1 to $n must appear exactly once within the base
Item. The defined array name, a, must not appear in any other specifica-
tion statement. The defined array has the same data type as the base
array.

Examples;
Valid DEFINE statements:

1) DEFINE ROWl(lO) = A($ 1,1) #ROW2 = A($ 1.2)
A reference ROWl(I) is equivalent to a reference A(1,1) and a
reference ROW2(I) is equivalent to a reference A{If 2).

2) DEFINE OFFSET(40,40) = ARRAY($l+2,$2-l)
A reference OFFSET (11+3,12+2) is equivalent to a reference
ARRAY(I1+4,I2+1).

3) DEFINE TRANSP(100,100) = EASE($2,$1)
A reference TKANSP(I,J) is equivalent to a reference BASE(J#I)

fevalld D IFINE statements:
1) DLFINE A(10,10) =B($2)

Both subscripts must be used in the definition; that is, both $1
and $2 must appear in the base item.

2) DEFINE DIAG (100) = ARRAY ($ 1, $ 1)
Each subscript may be used at most once in the base item.

3) COMMON /PEOPLE/ A
DEFINE A(100) =B($1+1)

The defined item. A, may not appeal'in any other specification
statement.

6.2.2 DATA Statement

The DATA statement is of the form:

DATA Vj/dj/^/dj/ v
n/dn

where each v is a list of scalar variable names, array element references,
array cross-section references, or array names and each d Is a list of
optionally-signed constants (integer, double integer, real, double precision.

-102-

l • -

complex, double complex, logical, Hollerith, octal, or haxedecimal)

any of which may be preceded by r*, where r is an integer constant indi-
cating the number of times the following constant is to be replicated.

The constants in the data list must match the Items in the variable
list In number and type, with the following exceptions:

1) An integer constant may be used to Inltialiise a double integer variable
or array element.

2) An octal or hexadecimal constant may be used to initialize an integer
or double integer variable or array element.

3) A Hollerith constant may be used to initialize
elements of any type but logical. The number of
the data type as given in the following table:

data type
Integer

double integer
real
double precision
complex

double complex
logical

number of characters
for scalar

lto4
lto8
lto4
ItoS
lto8
1 to 16

variables and array

characters must match

number of characters
for n element array

4n-3 to 4n
8n-7 to 8n
4n-3 to 4n
8n-7 to 8n
8n-7 to 8n
16n-l5 to I6n
none

4) A logical array constant may initialize a'loglcal array or array
cross-section.

-103-

I -

I

Examples:

Assume for all examples the statement:

IMPUCIT 1(1) ,DI(J) ,R(R) ,DP(S) ,C(C) ,DC(D) ,L(L)
Valid DATA statements:

1) DATA 11,12,13 /44.35,26/, J1J2 /2*0 /

H,I2, and 13 are initialized to 44,35, and 26, respectively.

Jl and J2 are both initialized to zero.

2) DIMENSION Rl(4), SA(40,40)

DATA R1(1),R1(3), SA /4.0,5.0,160*1.000 /

3) DIMENSION L(128),L1 Jj

DATA L/ .T., .F., .T., 125*.F. /, LI/[1,4.. .40]/

4) DIMENSION J(4)

DATA J / 26HMULTIPLE PROCESSOR SYSTEMS /

Invalid DATA statements:

1) DATA DC1, DC2 / (1.202,3.403) /

Number of constants must equal number of variables.

(1.2D2,3.404) is a single double complex constant.

2) DATA S5/2.5/

Data types must match. A real constant may not initialize a

double precision variable.

3) DIMENSION L(128), LI(128)

DATA L,L1 / 8HABCDEFGH, 4*ZFFFFFFFF /

Neither Hollerith, Octal, nor Hexadecimal constants may be

used to initialize logical data.

6.2.3 Input/Output Specification Statements

There are three input/output specification statements.

1) FORMAT st''cement

2) NAMELIST statement

3) DEFINE FILE statement

6.2.3.1 FORMAT Statement

The FORMAT statement is of the form:

FORMAT (0^02,...,Cn)

"

-104-

■

■

I

where each C Is one of the format codes:
r I w
r DI w
rF w.d
rDF w.d
rEw.d
r D w.d
r G w
r G w.d
r Z w
r 0 w
r L w
r A w

Tp
sP *
wX,

is a Hollerith constant, or is a repeated group of the form:
r(Cl'C2 Ck)

where:

r, an optional repeat count. Is an Integer constant Indicating the
number of times a format code or repeated group Is to be used. If r is
omitted the code or group Is used once.

w Is a non-zero Integer constant specifying the width of a field
in characters.

d Is an Integer constant that specifies the number of digits to the
right of the decimal point.

p is a non-zero Integer constant specifying a column position.
s is an optionally-signed Integer constant specifying a scale

factor.

The FORMAT statement is u«ed In conjunction with the formatted READ end
WRITE statements and the ENCODE and DECODE statements. The FORMAT
statement specifies the type of conversion to be performed for each iten.
in an input or output list. ^

-105-

I.
•

6.2.3.1.1 General Rules for FORMAT Statement

1) FORMAT statements must be labelled. The label of a FORMAT
statement may only be referred to in a READ, WRITE, ENCODE, or
DECODE statement.

2) A comma separating two format codes may be replaced by a series
of one or more slashes. Each slash indicates the end of the current record
and the beginning of a new record. A series of one or more slashes may
precede the first format code or may follow the last format code in a
FORMAT statement. In either case, each slash ends the current record
and begins a new record.

3) The comma is optional following the P and X format codes, the
count-delimited Hollerith constant, and the repeated group.

4) A complex or double complex output list item requires a format
code to convert the real part and a second format code to convert the
imaginary part.

5) When formatted output is prepared for printing, the first character
of each record is not printed but has tne following interpretation:

Character Interpretation

blank Advance one line before printing
0 Advance two lines before printing
1 Advance to first line of next page
+ No advance

For output to other units, the first character of the record is treated as
data.

6) There are two types of format codes: data codes which correspond
to Input/output list items and non-data codes which are processed between
the processing of input/output list items. The data codes include
I, DI, F, OF, E, D, G, Z, O, L, and A formats. Non-data codes written
after the last used data code are processed up to either the next data code
or the final right parenthesis, whichever occurs first.

■

-106-

* -

/
i : ■ •-

_I

7) If there are more data codes than input/output list Items, the
remainder of the FORMAT statement Is ignored. If there are more' list items
than data codes, the FORMAT statement is rescanned beginning with the
repeated group terminated by the right-most right parenthesis, or if
exists, with the beginning of the FORMAT statement. When rescan occurs,
the current record is ended and a new record begun.

Examples:

a) 20 FORMAT (12.13)
Is equivalent to

20 FORMAT (12.13/12.13/12.13/.../12.H)
b) 30 FORMAT (2X.204.3(4X. 14)))

is equivalent to

30 FORMAT (2X.2(I4.3(4X.I4))/2(I4,3(4X.I4))/...)

8) An array may be used Instead of a FORMAT statement. The content
of this array may be Initialized by a DATA statement or a READ statement.
for example. The contents of the array is a character string in the same '
form as a FORMAT statement, except that the word FORMAT and the state-
ment number are omitted.

Example:

DIMENSION A(2)
DATA A/8H(2X,I10) /

READ (4,A) K

6«2.3.1.2 Non-data noHas

There are five non-data codes:
1) Tp
2) sP
3) wX

4) Hollerith Constant
5) Slash

:

-107-

6.2.3.1.2.1 TP Code

The T format code specifies the character position In the record
where transfer of data Is to begin or continue.

Example;

READ(IUN,40) IJ.K

40 FORMAT (T20,I5,T10,I2,T60,I5)

will cause I to be read from characters 20 to 24 of the record, J from
10 to 11 and K from characters 60 to 65 of the record.

6.2.3.1.2.2 sP Code

The P format code specifies a positive, negative, or zero scale
factor for use on real and double precision data with E, D, F, DF# and G
data format codes. The effect of the scale factor for input and output is

external number = Internal number x 10s

A scale factor remains In effect until the end of the input/output statement
or until superseded by another sP code.

|nßut: A scale factor may be specified for any real data, but takes effect
only if an exponent is not specified in the input record.

Examples:

Code
-2PF7.4
-2PF7.4
3PF7.4
3PF7.4

Input
1.0E2
12.34
1.0E2
12.34

Internal Value
100.0
1234.
100.0
.01234

Qutfiut: A scale factor can be specified for real numbers output with or.
without exponents. For numbers without exponents the relation between
Internal value and external value Is the same as for Input. For numbers
output with exponents, the decimal point is moved and the exponent
adjusted to account for it.

-108-

-

Examples: -

Code Internal Value Cutout
F9.4 12.34 12.3400
2PF9.4 12.34 1234.0000
-2PF9.4 12.34 .1234
£12.3 3928.6 0.393E+04
2PE12.3 3928.6 39.286E+02
-2PE12.3 3928.6 0.004F 06

.2.3, wX Code

The X format code skips w characters on Input and writes w
blanks on output.

Example;

WRITE (1,50) IJ#K
50 FORiMAT (15,10X,I5,10X,I5)

cause I to be written in character positions 1 to 5, J in 16 to 20, K In 31
to 35 and blanks in positions 6 to 15 and 21 to 30.

6.2.3.1.2.4 Hollerith Constant

Both count-delimited and quote delimited Hollerith constants are
permitted in FORMAT statements. The data is read or written directly to or
from the FORMAT statement. If a quote-delimited Hollerith constant is
used, an apostrophe in the data is represented as two apostrophes.

iQßut: Information read from the input record replaces the characters
of the Hollerith constant.

Example:

400 FORMAT ('HOLIERITH')
READ (7,400)

Nine characters ire read from the input record and replace the characters
H-O-L-L-E-R-I-T-H.

-109-

■

""■""T- —- -

:.i

Output; The constant Is written on the output record.

Example;

1000 FORMAT(l3HiPAGEAHEADING)

WRITE (4,1000)

The thirteen characters following the H are written on the output record.

If the record is printed, the first character will cause skipping to the top
of a new page.

6.2.3.1.2.5 Slash

The slash specifies the end of a record on input or output.

Input; The remainder of the current record is ignored and further input

begins with the first character of the next record. Initial, final, and

adjacent slashes cause skipping of whole records.

Output; The current record is terminated and a new record begun. Initial,

final, and adjacent slashes cause blank records to be written.

Example;

WRITE(3,17)IJ

17 FORMAT (5HLINEi//5HLINE3)
cause the following output;

LINE1

(blank line)

LINES

6.2.3.1.3 Data Codes

There are eleven data format codes:

1) Iw

2) DIw

3) Fw.d

4) DFw.d

5) Ew.d

6) Dw.d

7) Gw and G w.d

8) Zw

9) Ow
10) Lw

11) Aw

-110-

Each data format code corresponds to an Item In an Input or output list
and specifies the form of the corresponding data field in a record. If w
characters are insufficient to hold a number on output, the field is filled

with asterisks.

6,' . 3.1.3.1 Iw and DI w Codes

I and DI format codes are used for transmitting integer and double

Integer data, respectively.

Input; The input field consists of w decijnöi digits and blanks. Embedded

and trailing blanks are interpreted as zeros.

Output; The number is output right Justified in a field of w characters,

with leading blanks.

Example;

WRITE (5,6) 43 2
6 FORMAT (14)

cause A432 to be written.

6.2.3.1.3.2 Fw.d and DFw.d Codes

The F and DP codes are used for transmitting real and double

precision data, respectively.

Input: Input is in one of the following forms;

1 1. i.f .f

1+e l.+e i.f+e .f+e

i-e l.-e i.f-e .f-e

iEe i.Ee l.fEe .fEe

iE+e l.B+6 l.fE+e .fE+e

iE-9 i.E-e i.fE-e .fE-e

iDe l.De i.fDe .fDe

iD+e l.D+e i.fD+e .fD+e

ID-e i.D-e l.fD-e .£D-e

-111-

——"M» (

I

I
I
I
I
I
I
I

where 1. f, and e are strings of declm representing th .

action, and exponent parts of a real nunj. 7^1211* ^
specified, the der^r ^.^ . : ^ decimal P01« ^ not specified, the deci.ai point is assumed to IV d d^ t ^ ^TV?"
side of 1. m other WOM. .^ , a digits from the right hand sWe of 1. in other words, the internal value is 10" tim* .
value. A scale factor (R * i o ^ , S the exten>al caie factor (6.3.1.2.2) applies only if e is not specified

Examples;

Format Cod A

.F5.2
F5.2
F5.2
F5.2
1PF5.2
1PF5.2

Input

Al.23

1.23A

AA123

A123A

Al.20

1.2+1

cnaracters. if a scale factor (6 3 1 ? ^ h»., u « w w
w I b.3.1.2.2) has been specified, it is applied.

Examples;

Format nnHo
F5.2
F5.2
F5.2
F5.2
F5.2
F5.2
1PF5.2
-1PF5.2
F5.2
F5.2
F5.2
F6.2

Internal Value
0.001
0.01
0.12
1.23

12.34
123.45

.123
.123

99.996
-99.996
-12.5
-12.5

Output
A0.00
A0.01

.A0.12

Al.23
12.34

***** (overflow)
Al.23

A0.01

100.00

***** (overflow)
***** (overflow)
-12.50

-112-

6.2.3.1.3.3 Ew.d and Dw.d Codes

The E and D codes are used for transmitting real and double
precision data, respectively.

Input; Input for Ew.d is identical to Fw.d Input. Input for Dw.d is
Identical to DFw.d input.

Output; The output is written as a minus sign (if signed), an Integer
part, a decimal point, d fractionaJ digits, and an exponent part, right-
Justified in a field of w characters. The form of the exponent part

depends on the magnitude of the exponent as given in the following table,

Exponent Value

0 to 9

10 to 99
100 to 999

1000 to 9999

Exponent Form

E+ Oe

E+ ee
+ eee
+ eeee

If a scale factor (6.3.1.2.2) is specified, it changes both the exponent
and the number of integer part digits.

Examples;

Format Code Internal Value Output
E12.4 12.34 AA0.1234E+02
2P E12.4 12.3456 Ä12.3456E+00
-2PE12.4 12.34 ÄA0.0012E+04
E12.4 12.34E+20 AA0.1234E+22
E12.4 12.34E+300 AA0.1234+302
E12.4 12.34E+400 A0.1234+4002
E10.4 -0.01 **********

Ell.4 -0.01 -0.1000E-01

1 Gw and Gw d Codes

(overflow)

The G format code provides for transmission of integer, double
integer, real, double precision, and logical data according to the type

specification of the corresponding variable in the Input/output list.

-113-

Input; The action of G format for input is given by the following table:

I/O list data type

integer

double integer

real

double precision

logical

Equivalent format

Iw

DIw

Ew.d

Dw.d

Lw

(d ignored if present)

(d ignored if present)

(d ignored if present)

Output;

table:

The action of G format for output is given by the following

I/O list data type

integer

double integer

real

double precision

logical

Equivalent form31

Iw (d ignored if present)

DIw (d ignored if present)

Fw.s,4X or Ew.d

DFw.s,4X or Dw.d

Lw (d ignored if present)

For real and double precision data, the form of output depends upon the

value of the number to be output. If the value is less thin 0.1 or greater

than or equal to 10 , Ew.d or Dw.d format is used. Otherwise the number

is output without an exponent, the action of the scale factor is suspended,

and a total of d significant integer and fraction digits are output.

Examples:

format Code Value Output

Gil.4 0.0123 A0.1230E-01

Gil.4 0.1234 A0.1234AAAA

Gli.4 1.2340 AA1.234AAAA

Gil.4 12.340 AA12.34AAAA

Gil.4 123.40 AA123.4AAAA

Gil.4 1234.0 AA1234.AAAA

Gil.4 1234C.0 A0.1234E+05

1PG11.4 12.340 AA12.34AAAA

1PG11.4 12340.0 A1.2340E+04

G5 12 AAA12

G5 .TRUE. AAAAT

G10.4 -1.0 -1.000AAAA

G10.4 -0.1 ********** (overflow)

-114-

— ' ■; / .7 ; -

^f<i»Be^m

/

6.2.3.1.3.5 Zw and Ow Codes

The Z and O format codes are used to transmit, from a field of

w characters, hexadecimal and octal representations of data of integer,
double integer, real, double precision, and logical data type.

Input; A within the input fields only the following characters are

permitted:

O input: 0,1,2,3,4,5,6,7, and blank

Z input: 0,1,2,3,4,5,6,7,8/9,A,B#C,D/E/F# and blank

In either case embedded and trailing blanks are treated as zeros. If the

value read is too large for the input data type, leading digits are lost.

The number right-justifled with leading zeros is the new internal value

for the input list variable.

Output: The octal or hexadecimal number is output right-Justified in a

field of w characters.

Examples:

Format code Value Output

02 4310 53

22 4310 2B

Z3 4b10 A2B

6.2.3.1.3.6 Lw Code

The L format code is used to transmit logical data.

Input; The first non-blank character in the field must be a T or an F.

The remainder of the characters in the field are Ignored. T represents

true and F, false.

Output: A T or an F is placed In the output field, preceded by w - 1

blanks, for true and false output, respectively.

-115-

f
6.2.3.1.3.7 Aw Code

The A format code is used to transmit character data stored in

variables of integer, double integer, real, and double precision data type.

The number of characters which can be stored in a variable is given in the

following table:

I
I
I

Data Type

integer

double integer

•real

double precision

complex

double complex

logical

Number of Characters

4

8

4

8

8 (must be output

as 2 reals)

16 (must be output

as 2 double precisions)

none

Input: w characters are read and stored left-adjusted with trailing

blanks. If w is greater than the number of characters which can be stored

In the variable, the leftmost characters are lost.

Output; The characters in the variable are right-adjusted in a field of

w characters with leading blanks. If there are more than w characters

In the variable, the leftmost characters only are printed.

Example:
DATA A/ 4HQRST /

WRITE (5,15) A^A

15 FORMAT (A3/A4/A5)

cause the following output:

QRS

QRST

AQRST

-116-

1
»

.-^

I

I
6.2.3.2 NAMELIST Statement

The NAMELIST statement Is of the form:

NAMELIST /n.Vv, /n,/v. ... /n /v

where each n is a namellst name and each v is a list of scalar and array
variable names. The NAMELIST statement is used with namelist input/
output transmission (6.1.3.1.3).

Example:

NAMELIST / SOME/A,C,E/ALL/A^CD.E

SOME and ALL are namelist names and each can be used in READ
and WRITE statements.

6-2.3.3 DEFINE FILE Statement

A DEFINE FILE statement is of the foim:

DEPINEHLE .^(n,,,,,^) um(„m.s,,,£m.vm)

where:

u is an integer constant representing a direct-access input/output
unit. Each direct access input/output unit must be declared in a DEFINE
FILE statement.

n Is an integer constant representing the number of records on
unit u.

r is an Integer constant representing the maximum record size and
specifies a word count if formatted input/output is not used and specifies
a character count if formatted or mixed input/output is used.

f is one of the characters E, U# or L indicating formatted,
unformatted, or mixed transmission, respectively.

v is the name of an integer scalar variable. At the conclusion of
each direct access input/output operation on unit u, v is set to the record
number of the next record. At the conclusion of a FIND operation v is
set to the number of the record found.

The DEFINE FILE statement is used with direct access input/output units.
Its use is described in section 6.1.3.2.2.

-117-

I

r
i

6.2.4 Subprogram Specification Statement

There are four classes of Subprogram Specification Statements:

1) Subprogram header statements which describe the characteristics of
the program unit in which they appear.
2) The EXTERNAL subprogram statement which describes the characteristics
of a subprogram referenced in the program unit in which it appears.
3) The statement function definition which defines a function for use in
the program unit in which the definition appears.
4) The ENTRY statement which defines an entry point to a function or
subroutine.

6.2.4.1 Subprogram Header Statements

There are three subprogram statements:

1) SUBROUTINE statement
2) FUNCTION statement
3) BLOCK DATA statement

6.2.4.1.1 SUBROUTINE Statement

A SUBROUTINE statement is of one of the forms:
SUBROUTINE N

CM-

SUBROUTINE N (s1, s2,..., sm)

where N is the subroutine name and each s Is an argument specifier of
one of the forms:

v
v VALUE
a

a VALUE

P
*

-118-

 . " Tl

■

where v 1, e scalar variable name, a Is an array variable name, and p

i«"^:::::name- The~a~—-ave.be.nowm,

« Use of the word VALUE speolfles argument passage by value, that is
«crag, is assigned for the variable or array In the subprogram. A value'
parameter may not be used to return a value to the calling program.

2) Writing a scalar or array variable name by itself specifies that It „11!
be referred to by location. Jn reference by location, the subprogram ■
reserves no storage for the dummy argument. The subprogram uses the "
co^esponding actual argument each time the dummy argument is referenced.

3) Writing an asterisk specifies that the actual argument is an alternate
return, which can be referenced wuh a RETURN 1 statement.

A SUBROUTINE statement is used to begin a subroutine sub-
program.

6-2-4'1-2 FUNCTION ataiaauffii

The FUNCTION statement If of one of the forms-
FUNCTION f (s^s s)
t FUNCTION f (slfs2

m)
e FUNCTION f (sj.s s")
te FUNCTION f (s^ s") .

where t Is one of the type declarators given In Table 8, . i8 an extenti

t is a function name, and each s Is an argument specifier of one of the
xorms:

v

v VALUE
a

a VALUE
P

where v, a, and p are as described in Section 6.2.4.1.1.

A FUNCTION statement is used to begin a FUNCTION subprogram.

-119-

!

■

6.2.4.1.3 BLOCK DATA Statement

A BLOCK DATA Statement is of the form:

BLOCK DATA

A BLOCK DATA Statement Is used to begin a block data subprogram.

6.2.4.2 EXTERNAL Statement

The EXTERNAL statement is of the form:

EXTERNAL s, ,s0 ,... ,s„. i z m
where each s is an EXTERNAL specifier of one of the forms:

n
n la | ,Qn #. •. »a.)

n (ai fa2' • * • '*fc' s

where n is a function or subroutine name, each a is an argument specifier,
and s is a side-effects specifier.

If the first form is used, actual and dummy arguments must match
in data type for each reference to n. If the second or third form is used,
an actual arcument of any arithmetic data type (integer, double integer,
real, double precision, complex, or double complex) can be matched with
a dummy ergument of any similar or dissimilar arithmetic data type and
conversion will be performed automatically. Such converted arguments
may only be passed by value (6.2.4.1.1) and may not be used to return
values to the calling program.

If the first form is used actual and dummy arguments must match
in extent. If the second or third forms are used to specify a scalar function
one or more scalar dummy arguments may correspond to array actual argu-
ments with identical extent. The result of the function has the same extent
as the array actual arguments.

-120-

, /

An argument specifier is of one of the forms:

LABEL

SUBROUTINE
t FUNCTION
te FUNCTION
t

tUSED
t SET
t USED SET
t SET USED
t e

t e USED
t e SET
t e USED SET
t e SET USED

where t is a type declarator (Table 8), and e is an extent specifier.

The LABEL option specifies that the argument is an alternate
return.

The SUBROUTINE option specifies that the argument is a sub-
routine name.

The FUNCTION option specifies that the argument is the name
of a function with given type and extent.

The USED and SET options indicate that a given argument is input
or output to the subprogram, respectively. If neither is specified, function
arguments are assumed to be USED and subroutine arguments are assumed
to be both SET and USED.

-121-

•"T —fun 'Hi iim

/

A side-effects specifier Is one of the forms:

USES (Ui.iu«... .u^)

SETS (£r1#s2#... sk)

USES (Ui'Uo »u^) SETS {sl,s2,...,a^)

where each u Is the name of a common block, scalar, or array whose

value(s) is (are) used by subprogram n, and each s is the name of a

common block, scalar, or array whose value(s) is (are) modified by sub- •

program n. In either case k may be zero, indicating that no variables

are used or set. If the USES or SETS option is not specified, it is assumed

that a function neither uses nor sets any common variables and that a

subroutine can both use and set any common variable.

An EXTERNAL statement must be used in each of the following

situations:

1) Any external subprogram name used as an actual argument must be

declared in an EXTERNAL statement. Built-in functions need not be so

declared.

Example:

EXTERNAL FUNGI, FUNC2

CALL SUB (FUNGI)

CALL SUB (FUNC2)

2) A subprogram which is to be referenced with actual arguments of

different type than the corresponding dummy arguments must be declared

in an EXTERNAL statement.

-122-

.

I
I
I
I

Example;

EXTERNAL FUNC (INTEGER, REAL)

Z = FUNG (Z,I)

is equivalent to:

Z = FUNG (IFIX(Z).PEAL(I))

3) A function which is expected to be referenced with array actual

arguments corresponding to scalar dummy arguments must be declared
In an external statement.

Example:

DIMENSION A(400), 8(400), 1(400), J(10,400)

EXTERNAL FUNG (INTEGER,REAL)

A = FUNG (3,B)

B = FUNG (I,A(N))

A = FUNG 0(4,*),A+B)

In each case one or more arguments .-re arrays with extent (400). FUNG
yields a result with extent (400).

4) If a function sets its arguments, or uses or sets common, it must be
so declared in an EXTERNAL statement.
Ex ant pie:

Galled Program:

FUNGTION IGOUNT (A,B)

GOMMON /G/I,J

1 = 1+1

IF tt.GE.J) A=B

IGOUNT = I

RETURN

END

-123-

Calling program:

COMMON /C/IJ

EXTERNAL ICOUNT (REAL SETM^.AL USED) USES (C) SETS(J)

B « (X-Y)**(I-I)

K - ICOUNT(X#Y)

C = 0C-Y)**(J-I)

If the EXTERNAL statement were not present, the compiler could

compute (X-y)**(J-I) once, assuming thnt X, Y, J, and I would not be

modified by ICOUNT. The EXTERNAL statjment forces the expression to be

computed twice.

It is desirable, though not required, to use an EXTERNAL statement

In the following situations:

1) If a subroutine does not use or set common variables or certain arguments,

declaration in an EXTERNAL statement can permit more extensive optimization.

Example:

EXTERNAL SUB (REAL USED »REAL SET)USES()SETS()

A = SIN(X} + COS(Y)

GALL SUB(X#Y)

B = SIN(X) + COS(Y)

Given the EXTERNAL statement, the compiler may compute SIN

(but not COS) once instead of twice giving the following equivalent code:

S = SIN(X)

A - S+COS(Y)

CALL SUBCX,Y)

B = StCOSiY)

-124-

:

■—' i i—11

I
2) If errors In argument matching are anticipated, the presence of an

EXTERNAL statement will allow the compiler to diagnose such errors and
simplify deLugg'ng.
Example:

EXTERNAL SUB (REAL,LABEL)

CALL SUB (3.5, 42)

CALL SUB (4.7, &100)

With the EXTERNAL statement the first CALL statement will be diagnosed.

Without It the error in the first CALL statement will not be diagnosed by
the compiler.

6«2.4.3 Statement Function Definition

A statement function definition Is a statement of the form:
f (d1,d2,... ,d) = e

where f Is the name of the function being defined, each d Is a dummy

argument, and e Is an express; n. Each dummy argument must be distinct

from other dummy arguments in the same function definition but may be

the same as dummy arguments in other definitions and the same as other

variables In the program. The expression may contain references to the
dummy arguments.

A reference to a statement function f<*v*2 a^ Is equivalent

to the expression e with all Instances of a dummy argument di replaced

with the corresponding actual argument ai (converted to the type of d).

A statement function may reference a previously defined statement function.
Examples:

PHUNK (I J) = A(I) - A(J)

B = PHUNK(K#U

C - PHUNK(M+3,9)*3.4

D = PHUNK (R,C)

-125-

The last statemerits are equivalent to:

B = AOO - A(L)
C = (A(M+3) - A(9))*3.4

D « A(IFIX(R)) - A(IFIX(C))

6.2.4.4 ENTRY Statement

The ENTRY statement is one of the forms:
ENTRY n

or

ENTRY n(s.,s- sJ
11 m

where n Is a subroutine name if the program unit began with a subroutine
statement and is a function name of the same type and extent as f if the
program unit began with a FUNCTION f statement. Sach s Is an argumer.r
specifier of one of the forms given in section 6.2.4.1.1 if In a subroutine
and of one of the forms given in section 6.2.4.1.2 If In a function
subprogram.

The ENTRY statement is not executable but Is part of the procedure
part of a program.

An entry point name may bu referenced in the same manner ?s a
function or subroutine name. When referenced the actual arguments or
subroutine name. When referenced the actual arguments in the call are
associated with the dummy arguments and control proceeds with the first
executable statement following the ENTRY statement.

Arguments associated by VALUE at reference to one entry point
retain their values for use at a latter entry point.

-126-

""■

• /
/

Example:

Called program:

SUBROUTINE SUB (A VALUE, B VALUE, C VALUE)

DIMENSION A(100),B(100),caOO),D(l00)
RETURN

ENTRY SUPER (D,I)

D(I) = SIN(A(I)+B{I))*COS(A(I)-B(I))*C(I)/D(I)
RETURN

Calling program:

DIMENSION RdOOKsaOOKTdOJKUdOO.lOO)

CALL SUB (R, S, T)

DO 10 J= 1,100

DO 10 K = 1,100

10 CALL SUPER (U(J.*),K)

Use of an entry point in this case passes the arguments R, S, and T

once instead of 10,000 times. On the other hand, the value parameters

A, B, and C require 300 elements in SUB which would not üave been

required had they been passed by location on each call within the DO loop.

6.2.5 FREQUENCY Statement

A FREQUENCY statement is of the fojm:

FREQUENCY 8. ,8.,..., 8 i z n

where each s Is a frequency specifier of the form:
L(I

1'
12 y

-127-

where L is the statement label of a control statement and each i is the
relative frequency of execution of a control transfer in the scatement

labelled L. The following statements may have the relative frequency
of branches specified in a FREQUENCY statement. In each case the
relative frequency of execution of the branch to label k Is l .

i) GOTOi,(k1.k,>,...k)

2) GO Tu kvK2.....kn)ti

3) IF (e)k1#k2,k3

4) IF (e) S In this case 12 Is the relative frequency of execution of
statement S and ij is the relative frequency of non-execution of S.
If S is itself a control statement ij is the relative frequency of

non-execution of S and i is the relative frequency of execution of
the label k .

5) IF (e) kj.kj

6) CALL S(...,&k2 fikg &kn,...). Ij Is the relative frequency
of execution of the primary return from S. 12 through ln give the relative
frequency of execution of the alternate returns.

n

7) DO k r-B,E,D. ^ is the number of loop iterations = (E-B)/b+l.

The FREQUENCY statement is optional and when specified allows
the compiler to produce more efficient code. If the frequency statement
is not provided, the following assumptions are made:

1) DO loops with constant parameters are executed (E-B)/D+l times,

where B^E, and D are the beginning, ünal, and increment DO parameter
values.

-128-

o

J

-
/

2) DC statements with variable parameters are assumed to specify 5
iterations.

3) Alternate returns in C.tLL statements are assumed to have zero
frequency of execution.

4) All other conditioaei brancnes are considered equally likely.

Example:

FREQUENCY 10(1,99999)

DO 1040 J = 1,100

DO 1040 I = 1,1000

10 IF (r(I).NE.O) GOTO 40

PÖ) = FlJ)**2 + P(I)**2
40 CONTINUE

1040 CONTINUE

If the frequency statement were not present, the compiler would

assume that F(I) .NE.O was true half of the time and false half of the time

It would then remove P(J)**2 from the inner DO loop assuming that it

would then be executed only 100 times and not 50,000 times. However,

the FREQUENCY statement indicates that it will only be executed one

time on the average and the compile-, thus leaves it as is, letting

P(J)**2 be executed once rather than 100 times.

-129-

I
7. PROGRAM UNITS AND PROGRAMS

^•1 Prooram Unüc;

There are four types of program unit:

1) Main program

2) SUBROUTINE subprogram

3) FUNCTION subprogram

4) BLOCK DATA subprogram

7.1.1 Main Programs

A main program consists of statements written in the following
order; *

1) IMPLICIT (optional)

2/ Specification statements (optional)

a) Type statement
b) DIMENSION

c) COMMON

d) OVERLAP

e) EQUIVALENCE
f) DEFINE

g) DATA

h) FORMAT

1) NAMELIST

J) DEFINE FILE

JO FREQUENCY

3) Statement function declarations (optional)

4) Executable statements* (at least one of which must be present)

FORMAT, NAMELIST and DATA statements (all optional).

5) Debug part (optional) consisting of a DEBUG statement optionally

followed by one or more debug packets preceded by an AT state-

ment and consisting of one or more of the following statements:

* Excepting TRACEON, TRACE OFF, and DISPLAY.

-130-

Bjgffijjy ^^gtfEimiTMl If» mm

....

I
L

5) a) Executable statements

b) FORMAT, NAMEUST, and DATA

O TRACE ON, TRACE OFF. and DISPLAY
6) END.

7.1.2 Subroutine Subprogram

fcUo^ ZT"' SUbPrWram COnSlS,S ^ S— ~ - *e

1) SUBROUnNE

2) IMPLICIT (optional)

3) Specification statements (optional)
a) Type statement

b) DIMENSION

c) COMMON

d) OVERLAP

e) EQUIVALENCE
f) DEFINE

fl) DATA

h) FORMAT

1) NAMELIST

J) DEFINE FILE

k) FREQUENCY

4) Statement function declarations (optional)

5) Executable statements* (at least one of which must be present)
FORMAT, NAMELIST, DATA and ENTRY statements.

ItLTt (OPti0nal) COnSiStln9 0f a DEBUG st~ optionally
followed by one or more debug packets preceded by an AT state-
ment and consisting of one or more of the following statements:

a; Executable statements
b) FORMAT, NAMELIST, and DATA

c) TRACE ON, TRACE OFF, and DISPLAY
7) END

Excepting TRACE ON, TRACE OFF and DISPLAY

-131-

T . n...» -, -,1

■

-

■

A subro »til e is referenced In a CALL statement (6.1.2.3). In

each CALL the r.umber of actual arguments must match the nunber of dummy

parameters. The actual arguments permitted for each dummy argument
ere given in the following table.

TABLE 9; SUBROUTINT- ARGUMENT MATCHING

Dummy Parameter Actual Argument

VALUE scalar variable -»

unmodified scalar variable J
{scalar expression of same data type

Hollerith constant of same size

modified scalar variable 3 2 scalar location of same data type

VALUE array variable **

unmodified array variable I
array expression of same data type

and extent

modified array variable 4 2 array location of same data type
4

and extent

subroutine name subroutine name

function name function name

alternate return dummyv alternate return

Notes

1) See section (6.2.4.1.1) for a discussion of VALUE parameters

2) See section (6.2.4.2) for a relaxation on data type matching

3) A scalar location is a scalar variable or array element

4) An array location is an array variable or array cress section

5) An alternate return is the character & followed by a label

6) See section (6.2.2) for size of Hollerith constants

-132-

■

 ,—_

■

7.1.3 Function Subprogram

A function subprogram consists of statements written in the
following order:

1) FUNCTION
2) IMPUCIT (optional)
3) Specification statements (optional)

• a) Type statement
b) DIMENSION
c) COMMON
d) OVERLAP

e) EQUIVALENCE
f) DEFINE
g) DATA
h) FORMAT
1) NAMELIST
J) DEFINE FILE
k) FREQUENCY

4) Statement function declarations (optional)
5) Executable statements* (at least one of which must be present).

FORMAT, NAMELIST, DATA and ENTRY statements.
6) Dabu 3 part (optional) consisting of a DEBUG statement optionally

followed by one or mere debug packets preceded by an AT state-
ment and consisting of one or more of the following statements:

a) Executable statements
b) FORMAT, NAMELIST, and DATA
c) TRACE ON, TRACE OFF, and DISPLAY

7) END

Within the subprogram, the function name which appears in the
FUNCTION statement may be used as a variable. The last assignment
made to that variable before return is the value of the function reference.

* Excepting TRACE ON, TRACE OFF and DISPLAY.

-133-

A function is referenced in a function reference of the form

f (a | < a^ t»m»i a J

where f Is a function name and each a Is an actual argument. In each
function reference the number of actual arguments must match the number
of dummy parameters. A function must have at least one argument. The
actual arguments permitted for each dtuxuny argument are given in the

following table.

TABLE 10: FUNCTION ARGUMENT MATCHING

Dummy Parameter

VALUE scalar variable -»
unmodified scalar variable J

Actual Argument

2 3 (scalar expression of same data type
Hollerith constant of same size

modified scalar variable
2 5 3 scalar location of same data type

VALUE array variable -i
unmodified array variable J

modified array variable

array expression of same data type
and extent

6 3 an ay location of same data type
and extent

subroutine name subroutine name

function name function name

Notes
1) See section (6.2.4.1.1) for a discussion of VALUE parameters
2) See section (6.2.4.2) for use of array arguments hare
3) See section (6.2.4.2) for a relaxation of data type matching
4) See section (6.2.2) for size of Hollerith constants
5) A scalar location is a scalar variable or array element
6) An array location is an array variable or array cross section

-134-

'•1.3.1 Built-in Functions

In addition to functions which a user of IVTRAN may write, several
predefined funcUons are available for use. These are given In Table 8.
In each case no EXTERNAL statement Is required to define argument types
or side-effects.

I

-135-

3
n

c o
co

Ü
0)

O) o

c
o
en

Ü
0)

«

-•9
Al O

a
E o

6 3
o o
UQ

X a)
a
E
o
U

a) a
H

C
o
CO —<
o

£
0)

—H

3
O

«Q

c
o
to

—4
Ü
0)

0)
ja
3
O

(0

CM

0)

CO
e

X
c

—H
CO

II

is

X
0)

—4 a
i

xü

E 3
o o

X
i>«
E 3
O O
ÜQ

X

a
§

xü
JU a,
a3
2 3
o o
ÜQ

c
o —<
CO —<
Ü

0) o

c
o
co

o
0)

£
0

<0 3.

c
o
CO —<
Ü
0)
Ä
0)

« 5
0) o

c
o

—I
(0 •»<
G
0)

S ft O) o

c
o
w

^^
Ü
0)
£

CO

■g

g
coQ

X
CO

8
ii
ts

a

c
o
J3

m
wO
OÜ
ÜQ

N

C
CO

II
>.

coQ
ÜÜ

N
(O
O
Ü

II
5s

CO
eoO
OÜ
ÜQ
ÜÜ

X
c
j?
II
is

X

5
S

C
o
CO

Ü
0) u

cu

0) o

XI
3
o

a: Q

c
o
CO

Ü
0)

0)

-•9
ID ^ S o

0)
c

si

X
c
co
o

co
O
Ü

Jo

58
op

g CO
53«
s

CO
coO
~ Ü 8

«
0 u c

«-« "2 <a c s a
a o
8 R
Ü CO

g

i
c
0)

I

I «
o
Ü

I
o
fl)

CO
o

-137-

I
I
I
I
I
I
I

0) a

3
CO

C
o

■»*
CD

o
9)

&
0) -^

-'S

c
o
M

•»^
o
<u

0) o

a)
a.

g
o
m
o

I
0)

-1
0) o

CM

3

0)
Q

CO

CO

s
8
In

B

ß

c
10
•M
p
u
(0

II

C
O
—i
co

ü

a:

^<
-•§
O O
o: Q

o •**
m
o
0)

a>

Q:Q

(0
(U

C
O

0)

3
O
Q

c
o
(0

Ü
Ö

c>J eg

o

Ü

<—I

8
ö

as

c
(0 *->
o
(0

II

p

CM

^^ <p

4)

II

<M

c
Ü

01

Ü
0)

ccP

(0

(0

o

£

3
O
P

c
o

0)

0) U

u 0) aj-5 v

fO
0)
Di

c
o
-H
(0

—4

Ü

£
3
3
O
P

« 3 M 3

£PKP

s

0)

0)

X

gCO
wP

a>
+

<

11

CM

ww
MO
OÜ
OP

X
i

4)

I

X«
II

0)

+

a>

c
o
—I
co

ü

£ it

«> 3 B 3
c2 So tiQccQ

a
E
o

II 6 3
o o
op

X
a>
a

£3
o o
UP

SP

-CM

M
CM

II

*
CO

c
0)
D>
C
Rl
♦-<
Ü

I
CO

O V

I«
|8

K (0

c

S1

Ü

o
JQ

CM
ml

N

^X
II
>.

CO

S8

X

o
3

■—«

0) «-•
3
3
m
5

-138-

■

a

-139-

,

3
m

c
o
n
Ü

£
m u, u
-5 a> a>

^ ä o> o>
O 3 0) <U

SSSS

c c
o o
w w
~* —<
ü ü

-i 23
« s 3 n» o o
aQQ

4)

a>

0>JU
0) 3
*i O
So

c
o
ca

Ü
0)

« fl 3

c
o

■"«
(0 •»< o
a>

C «o
5ce:Q OS •-)

c o •a u
(0 Q)

"3 ?

32
3 3
o o
QQ

(U
Q.
>.
H

O

c
o
—t
«1

o
0)

&

-^ •
X»,

c
o
(0

o

£

^ 2 « 2 0)0(1)0

0)

0)

t, u m
V 0) H

a) 0) 3
■ä *i o
5£Q

10
0)
a:

c
o —<
CO

Ü
0)

0)
-■<

3
O
Q

c
o
(0

ü
0)

0) u
0)
D>_ Xi
« m 3

c So

§
(0

—H
o

flu

0) JH

c So

e o
CO Q)

«iB
&£
0) 0)

3 3
O O
QQ

c«a pg CM CM CM CM

0)

0) c

CM

g
I a
0)
p

«
0) ti
£ 0) u 4-1 C7>

c

w

c

0)

*-<
D> (1> w

•»H u a)
0) o>

0)

6
o

til
2 0) C u

62

•0

£

•ÖJ3

8s

CM

c

w

H

CM

5
i

3§
3 "d

fi,

II
Ss

0) c

C co
•-< -4
0) Ü

gB
«b ID
<U X]
Cn 3
c o
«o -o

6s

CO

li
CM

Hg 2

5Q2Q

•HH

öS
SQ

1« 2

£35p QQQ CO 1-4
00

*
M

00

pQ

G
o

CM

0)
C
0)
Ü

c
o

10
o
c
2
H

o It
KM

55
CO
c
(0

u
c

I
p

CO

§
—4
CO

s
I
o I
«0

Ü.

-140-

4) a
>.
H

3 n

C
0)
e I

0) a

O
2

eg

§
53

4)
Q

<*J

CO

2 I
i

3
to

d

c
o
Ü I

•—•
to

c
0)
Ü

c
o
M

Ü
0)

«t

So

X
0)

a
E o
Ü

E 3
o o

s

c
o -»< OT —<
u

4:

of Q

x
a>
a
E
o
Ü

t:
(0 a
10
a>

5
T» a> n -H

10 a
-H 1
m Q
0) u
u «M

c o
10

Ü a

X
4) •-« a
i
Ü
o

E 3
o o
UQ

x
« <D

E 3
o o
UP

c o
en
Ü
0)

0)

X
CO

Q.
E
o

x^
« ®

I3
E 3
o o
ÜQ

N

<0
c

10
E

TT

si
CM CM

* * o

§3

CM
X

+

f

X
0)

a
E o

xü

E 3
o o

-UfiL

c
o
-H
n
o
0)

£

« 3 fl 3

SQOCQ

14
0)

0)

c

(0 <

is
10

c

10 CO

CM
X

CM X
X it

s
I*

0) <0 w

4S< fl)

c
^ 5
a> ■ m
ot T*
<D O

£ Ä

OIJQ^, ja
0) 3 « 3

(0 I

0)
D>
4)

c
o
(0

■H
Ü
4)

fc «

|oSS

<0

&l g
< 4) (U w < 4) (0 co

N

v 4)

« Ü

oo
ÜQ

x
M

•D CO J3 r-J

t3
II

5
10

3

g
Ü

•a
i

g
10
E

CO

(0

t5
3

-141-

.

4) a

3
n

C
0)
e

<D a
H

O
2

C4

3

CO

g

J3

C
O

§
c o
O

0)

0)

c o
•H
M

Ü
V

> i £
Ja ifl a)

0) 3 ffl 3

n

s
< 0) (0 co

(O
Ü —^
O

Ü

1-1

5
C

6
ii

alii sals

it -H

» 0
o o n

I ji
is

.5
5,

E
is
<0

s
•-4

ll

0
Ü —«

«0

(0
Ü

0)
3

s.

ll «a

(0 4->

o CQ

s s
II

+
VI

V)
t:
l

CM c
«0

ll

0

fl)
3

 or

§0
E

•M Q>

5 0)
o 3

s

0

>

s
3

m
0
«
E

o
2

| 5
E "O
c a Sa

E
a 8
R c

5 3

CM CO

-142-

■

7»1.4 Block Data Subprogram

A block data subprogram consists of statements written In the
following order:

I

1) BLOCK DATA

2) IMPLICIT (optional)

3) Specification statements (at least one of which must be present)
a) Type statement

., b) DIMENSION

c) COMMON
d) OVERLAP

e) EQUIVALENCE
f) DEFINE

9) DATA
4) END '

7.2 Programs

A IVTRAN program consists of a main program, with possible sub-

routine subprograms (optional), function subprograms (optional), a single

block dat subprogram (optional), together with any built in functions

required. A IVTRAT program is prepared by compiling its main program

and subprograms and linkiny them with the linkage editor. The result of
this process may then be loaded and executed on the ILLIAC-€V

-143-

APPENDIX A: ALLOCATION

In order to utilize the parallel data paths availabls on the "LLIAC-IV,
data must be properly arranged in storage. This arrangement in storage is
called allocation. The body of this manual has described a fixed default
allocation which permits parallel operations on any single index of an

array. This appendix describes a rich set of optional allocations which

permit parallel operations on a set of simultaneous indices, more efficient
use of storage and so-called "scatter vectors".

Section A.l describes the options available for allocating data.

Section A.2 describes the various places where optional allocations may

be specified. Section A.3 describes the operations which may be performed
upon data with optional allocation.

A.l Optional Allocations

The storage of the ILLIAC-IV is arranged so that each of the 64 processing
elements (PEs) can directly access 1/64 of storage. PEj can address locations
a where a mod 64 = i. To allow operaUons in parallel on an anay index the
array must be so arranged that successive index values correspond to array
elements accessible to successive PEs. Such an arrangement Is called
physical skewing, if an addition «successive index values correspond to
successive storage addresses, the index is known as a preferred index.

It is sometimes desirable that variations in an index value not select
different PEs. Such an index is called an aligned index. An aligned index
is useful with scatter vectors which select a different element out of each
row (or column).

-144-

A set of indices written (ij .i2 y and called a multi-index, may
be treated as a single index. For example, in a three dimensional airay.
the third and first indices might be so treated/in which case successive'
values of the pair of indices (if physically skewed) correspond to successive
PEs.

PE, PE, PE, PE, PE. PEr 0 '-1 '"2 '"a rN '"S
A(l.l) A(2.1) A(l,2) A(2,2) A(l,3) A(2,3)
A(I.l) A(1.2) A(l,3) A(2,l) A(2,2) AC2.3)

Example;

Multi index Extent
(1.2) (2.3)
(2.1) fc.3)

As Is clear from the example, if an operation can be performed upon a
multi-index (ij,i2 ,... ,ik) it can also be performed upon multi-indices

(ij), Üj.^ •and ^i^2"" 'Ajc-j) because successive values ct these
multi-indices correspond to successive PEs. bj. ^, etc. cannot be
used for parallel operations because successive values do not correspond
to successive PEs.

A. 1.1 Allocation Specifier

The allocation specifier is of the form:

Cnij.m,. .., ,m.3

where each m is a multi-index specilier of one of the forms:

1 **2 ' * * *' k'
1 * 2 ' * ' * ' lr'

l'*2' * *' '^

where each 1 is an Integer constant representing an Index from 1 to n where
n is the dimensionality of the array being allocated. The same index may
appear but once in an allocation specifier. The first form of multi-index
specifier specifies a physicallv-skewpri multi-index. The second form
specifies an alianed multi-index. The Lhlrd form specifies a preferred
multi-index. Only one preferred multi-index may be specified in an
allocation specifier. The order In which Indices are specified in a multi-
Index specifier is important. However, multi-index specifiers may appear
In any order within an allocation specifier.

-145-

If one or more indices are unspecified in an allocation specifier, each
is implied to be a physically-skewed index. Thus [(1,7), (6,4)] is

equivalent to [(1,7), (6,4), (2), (3). (5)]. There must be at least one
physically skewed or preferred multi index, specified or implied by each
allocation specifier.

Examples:

Valid Allocation Specifiers

[(1,2)]
[(4)]

[(3), (7), (2)]
[$(1M2)]

[#(3,4) ,.$(1,2)]

Invalid Allocation Specifiers

C (4000)]

[(1,2), (3.2)]
[$(1).$(2)]
[#(2.1)]

4000> number of dimensions
index 2 appears twice

preferred multi-index appears twice
no physical!/ skewed index

A.1.2 Multi-index

A multi-index is a sequence of indices which is treated as a single

Index for purposes of allocation. An array A with one or more multi-indices
is equivalent to another array A* with fewer dimensions.

Examples:

A extent A allocation A reference
(10.5) [(1.2)] A(I.J)
(10.5) [(2.1)] A(I.J)
(3.4.5) [(1.3)] A(IJ,K)
(3.4.5) [(1.3.2)] A(I,J,K)

A' extent
(50)
(50)

(4,15)
(60)

A' allocation

[(1)]

C(i)]
1(2)1

A' reference
A'd+a-Dno)
A,0+Ö-l)*5)
A,(J#I+(K-1)*3)|

C(l)] A'tt+S^-D+lS^-D)

-146-

I
A pemlssable multMndev Is either a specified or implied multi-index

{12 .ij.... .y or a prefix of a permissable multi-index (11 i)f

lae<k.

A.1.3 Physical Skewing

A physically skewed index provides for parallel operations upon part

of an array at the expense of storage efficiency. For example, the array A

with extent (3,4) and allocation [(1), (2)] may be arranged in storage in one
of the following two ways:

PE,

'1,1

PE 1 PE,

"1,2 ^1.3

Vl ^,2

PE.

A1.4

*2.3

%3,1 A3.2

PE,

'1,1

PE,

'2,1

h.2

PE, PE,

PE4

^.3

PE.

PE. PE 63

%3.4

PEt PE 63
"3.1

^.2 A3.2

A1.3 ^5.3 A3,3

A1.4 ^,4 ^.A

The first arrangement corresponds to [(1) .«(2)] and the second to

L $(1). (2)] . Unless other variables can be placed in the rows used by the

array A. the space will Ke wasted. The compiler attempts to minimize the

wasted space by fitting arrays together (as one trys to fit suitcases into a

car trunk). If the arrays are of the wrong size or are physically skewed when

no parallel operations are to be performed upon them a considerable amount

of space may be wasted (as car trunk space is wasted if the suitcases are

the wrong size and shape). Generally space utilization is improved If

-147-

■

^»

■ . . . -* '

I 1) Different arrays are of similar extent and allocation.

2) Dimensions are multiples of 64 (or somewhat less; 61 is nearly as
good as 64).

3) Multi-indices are used where possible to combine small dimensions

into a larger index. E.g., (3,3,6,20) is much more economically allocated
[(1,2,3)] or[$(3.4)] than [(1), (2),(3). (4)] .

4) Large arrays are given special attention. Small arrays will generally
fill in the cracks around larger arrays.

A.1.4 Aligned Indices

An aligned index may be used for a non-parallel index to decrease the

amount of computation required for array accesses or it may be used to
implement "scatter-vectors".

A scatter vector is an integer array which is used to select a different

element from each row (column) of an array. Given an array A(5,5)[#(l) ,(2)],

a scatter-vector SV(5) =2,4.3,3,1, and an array B(5), the statements

DO 1 FOR ALL I/[1...5]

1 B(i)=A(SV(I),I)

are equivalent to the statements:

B(1) = A(2,1)

B(2) = A(4,2)

B(3)«A(3,3)

B(4) = A(3,4)

B(5) = A(1,5)

This is possible because the five selected elements of A are in adjacent

PEs, as shown in the following diagram, where the selected elements are
circled.

-148-

■

I
PE,

©
*3.1

PE,

1,1 "1,2

A2#2

,1 Q
A5,l ^,2

i'E,

1,3

^2,3

PE,

1,4

© O
'4,3

PE 4

i.s;

^4 A2,5

'3,5
A4,4 A4,5

A5,3 A5,4 A5,5

PE 63

It Is Illegal to align all indices of an array. This would give an
allocation (were it allowed) for an array A(4)[#(l)] which is wasteful of
space and serves no useful purpose:

PE, PE
J PE 63

A*1#5 Physical Skewing for Different Data fyp**

The discussion thus far has assamed that elements of all data types
occupy a full word. In actuality, logical elements occupy 1 bit, integer

and real elements occupy 32 bits (1 half word), and double complex elements

occupy 128 bits (2 full words). These date types require special treatment,
as outlined in the following sections.

A.1.5.1 Logical Data

Cne physically skewed index (the preferred multi-index) is assigned
successive bit positions in successive words. Index values 1-64 are In
bits 0-63 of PE0, index values 65-128 are in bits 0-63 of PE , etc

Other indices are skewed in the usual fashion. For some operations (e.g.,
combining two such indices) 64x64 » 4096 elements may be operated on in
parallel. For other operations only 64 elements can be operated on in
parallel.

-143-
■ ■

-

I
I

I
(

I

A.1.5.2 Integer and Real Data

The first 64 elements of the preferred index occupy the inner half

word of a row of 64 words. The next 64 elements occupy the outer half
word of the same row. For some operations, 2x64 = 128 elements may be
operated upon in parallel. For others only 64 elements can be operated on
in parallel.

A. 1.5.3 Doubl^ Complex Data

The real parts of the first 64 elements of the preferred index occupy
a row of 64 wordb. The imaginary parts of the same elements occupy the
next row of 64 words.

A.2 Use of the Allocation Specifier

The allocation specifier is used in the following contexts:

1) logical array constants
2) DIMENSION, COMMON, and type statements
3) FUNCTION and EXTERNAL statements

A.2.1 Logical Array Constant

An enumerated logical array constant with its extent, if any, may be
followed by an optional allocation specifier. An iterated logical constant
is one dimensional, may not have an allocation specifier and is assumed
allocated [$(1)] .

m

Examples;

Valid constants:

[(1,1),(2,2),(3,3)] [(2,1)]
[](5,5,5)[(3,1),$(2)]

-150-

■

I
I Invalid constants:

[1,7...400] [(1)J

C(4,3,2),(3,2,1)] [(4,2)]

an Intere'ed constant may not
have an allocation specifier

Index (4) larger than number of
dimension

Tta DIMENSION. COMMON, and Type Sö,emen« each penaU ,„ "
allocation specifier ,o follow the exten, If present.

Fxamoles;

DIMENSION A(40,346)[#(l),(2)]

INTEGER X(2,2,15)t(l,2,3)],ICE(40,30,20)
COMMON /COLD/ICE[(1).S(3,2)]

be ldürU,0r'0n declara,lons for «h. variables of a common block mu.t
be Identical for each p^ram unl. In which a common olock 1. used.

A-2-3 FACTION anrf EXTERMM «„. g

Th. allocauon of the result of an array function may be specified by

TMs allocation must be specified in a DIMENSION stttement in each
pro9ram unit in which the function is used. In addition, the function must
be declared in an EXTERNAL statement to distin,uish it ^ an aZ Zble,

Example;

(10,10) [(1,2)] FUNCTION FOO(D

END

-151-

Calllno program;

DIMENSION FOO(10,10)[(l/2)]
EXTERNAL FOO

ARRAY = FOO (3)

END

The external statement may specify the allocation of. an argument by
writing the allocation specifier after the extent in the external statement
The allocation of actual arguments must match the allocation of formal
(dummy) parameters. The EXTERNAL statement is required if the allocation
of an argument is other than the default allocation.

Example:

SUBROUTINE TWO (A)
DIMENSION A(40#40)[(l),#(2)]

END

Calling Program;

EXTERNAL TWO (REAL(40.40)[(1)##(2)])

A'3 Use of Allocated Data

Optional allocations extend the DO FOR ALL statement, the set
selector, array expressions, and array assignment.

-152-

A.3.1 DO FOR ALT. Statement

A DO FOR ALL stitement may be of the form:

DO k FOR ALL (Ij.I Wh
where each I Is an Integer scalar variable called a control index and
(I,,I j ,Ir ,.. ^y is called the control multi-index. Sk is a k-dimensional
logical array expression with allocation [(1,2,... ,k)].

Within the range of the DO FOR ALL the control indices may only be
used in statements of the form:

or
p= e
IF(f) p = e

where

1) P is an array element reference with a permissable multi-index fc. 1.2)
(11 'l2 V and each subscript S =1 or = I + C where C is an
expression independent of the control indices. All other subscripts
be independent of the control indices.

subscripts must

2) e and f are each an expression which may or may not depend upon the
control indices. Within e and f any array element references are either
of the form 1) above or are independent of the control Indices.

3) Within an array reference of the form 1) a subscript position corres-
ponding to an aligned index may be of the form 2).

m

The execution of the range is identical to the description given in
Section 6.1.2.7.2 except that each DO FOR AIL assignment is executed
in parallel for all values of the multi-index as opposed to a single index.

-153-

-

I
Example!

DIMENSION A(8,40,8)[(3,1)LB(8,8)C(1,2)]
LOGICAL S(8,8)[(1.2)]

DO 1 FOR ALL (I,J)/S
1 A^K,!) = B(I#J)

In this case the 64 assignments are carried out In parallel. Note
the way the array elements A(J,K,I) and B(l,j) are constructed:

Control Multi-index: (j j)
14

Allocation: [(3,1)]

Array element:

A.3,2 Set Selector

(U)
4 4

C(l,2)] a
B(IJ) A(J,K#D

t
Independent of I,J

A set selector is written:

C(IrI2,...fIk)/Sk:B]

where S and the Is are as described in Section A.3.1 and B is a boolean
expression of the same form as the expression e in Section A 3 I The

result array expression has an extent (d, ,d ^) Jherl

«im ;:rdm,Vs the extentand ^^'---v * t^p«^««.
ZTTm. k' ^allocatlon of result array expression ls

-154-

,l''1'11 ■■

% v. T ; ; ^ :,

•

A.3.2 Set Selector

A set selector is written:

cdj.ij y/v^
where S. and the I s are as described in Section A.3 .1 and B is the boolean
expression of the same form as the expression e in Section A.3.1. The
result array expression has an extent (d. ,d. ,..'. ,d.) where

(d, ,d2 ,... ,dm) is the extent and (i. »i,, •.. ,iJ is the permissable
multi-index of s. . The allocation of the result array expression is
C(l,2 k)].

Example;

The array S in the example of Section A.3 ..1 could be initialized with
a statement of the form:

S = [(Ij)/.NOT.[](8,8)[(1,2)]:I.NE.J]

A.3.3 Array Expressions

An array expression has, in addition to its extent, an allocation. The
allocation of an expression is a set of permissable multi-indices (.1.2).
The allocation of an array expression is determined as follows:

1) An array variable, constant, or function has the permissable multi-indices
specified and implied by its allocation-specifier.

2) A parenthesized array expression, a unary array operator, or a binary
operator operating on an array and a scalar has the same allocation • s the
array operand.

3) A binary operator combining two array expressions has an allocation
which is the set of permissible multi-indices common to both operands.
There must be at least one common multi-index for the expression to be
legal.

-155-

12

4) A scat« function wlth one or a„eaiiay actual arguments

.calnr dummys has as an aUocaüon the set of mulu-tadloes oon.mon to ali

such agents. Thera must be at 1east ona con.mon mum-,„dex for the
function call to be legal.

4) An array cross-section has the ^„e allocation as the „ray with ell
pemussable multl-lndlces omitted which have an index position which is „or
occu^ byanasterish. If there remain no „ultl-indlcL S^^Z
s llegal E.g., an array D with an allocation [(1) ,(2,3), (2)] has the

toilowlng legal cross-sections;
cross-sectfon

D(*,*,I)

D(I#*,*)

D(MJ)

allocation
C(1M2)]
[(1)]
[(2,3), (2)]
C(l)]
[(2)]

D(I,J,*) is illegal because all multi-indices would be omitted.

Examples i

Assume the declarations

DIMENSION Aa0,10)[(l), (2)] .BUO^OJC (1,2)]

C(lO/10)[(2,l)],D(10,10.10)[(l)/(2#3)]
F (REAL, REAL)

Allocation

[(«,(2)]

EXTERNAL

Expression

A

B

C

A+B

AK3
B+C
D
D(*,M)

D(*,M)+A
F(D(*,M)#c)

Extent
(10,10)

<10'10) C(l,2),(l)]
(10,10) C(2,l), (2)]
(10,10) [(!)]
(10,10) [(2)]

Illegal - no common multi-index
(10.10,10) C(i),(2,3),(2)]
(10,10) ' [(i)/(2)]

^1°) C(l),(2)]
(10,10) [(2)]

-156-

■

.

A.3.4 Array Assignment

Any array expression may be assigned to any array location with the
same extent. If they share a permissible multi-Index, the operation can
be performed in a single parallel step. If they share no permissible multi-
index, the compiler will use a temporary array which has one or more per-
missible multi-indices in common with the array expression and the array
location.

Example:

DIMENSION A(10,10)C(1),{2)].B(10,10)[(1.2)]
C(10.10)[(2#l)]

A-B
•

can be performed in one parallel step using
am

A-C -an be performed in one parallel step using
C(2)]

B = C must be performed (by the compiler) in two
parallel steps:

1) t-c
2) B-t

where t has an allocation [(1),(2)]

-1S7-

-

y

I

CHAPTER HI

FUNCTIONAL SPECIFICATION FOR THE

ILLIAC IV LINK EDITOR

s-l-A

.

I

Introduction

The basic function of the linkage editor will bo the linking of

separately assembled ASK or FORTCAN compiled programs. Each assembly

or compUaUonwül generate an object module. The linkage editor, which
operates from its own source language , is used to specify the relationships

among these object modules. The output is a file, called a load module
which instructs the loader of the memory layout desired.

Although the linking of object modules is the primary function of
the linkage editor, it will also accomplish all of the following items:

1)

2)

3)

4)

5)

6)

7)

8)

9)

Text relocation.

Generation of a load module.

Library loading and linking,

Subsegment generation.

Issuing maps and error diagnostics.

Resolving external references and entry points.
Storage allocation,

Checking for consistency of data types between
actual and formal parameters.

Checking for öonslstency among array de.claiations.

The proposed linkage editor permits the Gser to physically arrange the object
modules in memory without Imposing any logical relationships, m addition

It allows for the loading of modules without constraining the memory to

hold unrequested modules. This concept Is known as the "memory occupation

specification" technique. The benefit of such a technique Is that It eliminates

the tree structure Imposed by most linkage editors. Tree structuring Implies

that there Is some logical relationship among object modules throughout

the program. It also Imposes a hierarchy, when often none exists, upon
t*.e functional operation of the modules.

-158-

-

. _ _

Segmentation

To minimize the memory requirements, a programmer may organize
his program into segments. Segments are constructed from separately
generated object modules. A segment may have within Itself other non-
related segments which overlay one another (i.e., subsegments).

We shall Illustrate a segmented program as shown below. In the
diagram, a horizontal coordinate is used to denote increasing memory
storage from left to right; a vertical coordinate is used to denote subsegments
and disjoint programs. Thus, if a program is to consist of a portion A,
which is to remain in memory at all times, and two portions B and C which
follow A and are to be overlayed, we would use the diagram:

B

LI
HI

where B and C utilize the same memory. Segments and subsegments are defined
by utilizing the SEG control statement.

-159-

H- fdlowin, ls a syntactic specl„catlon fer the SEG cintroi ^^^^

Seg-statement
specification

segments

subsegment

overlay

common

routine-name
ident

SEG specification
routine-name (

routine-name , segments |
common , routine-name |

common , routine-name, segments
subsegment |

segments, subsegment
routine-name |
(overlay) |

common , routine-name
overlay = segments J
segments
/ Ident / |

common , / ident /
ident

Identifier

"«r xr'be9in w"h a ie,ter and ~»' - - - -
Thd following describes the terminals used in the

of a SEG control statement:
specification portion

, indicates that two programs are to occupy memory
at the same time, and are to be contiguous,

= indicates that two programs are to begin at the same
memory location (i.e., disjoint),

«

() Indicates subsegments (I.e., grouping),

// Indicates COMMON allocation.

The terminal -," is considered to have greater precedenco than
the terminal "=".

-160-

•■ v ■ '* -1

The following Is a set of examples to clarify the syntax.

The specif lea vion A, B would cause the following allocation

of storage:

A B

and the specification {A = B) would cause the following allocation

of storage:

B

where A and B are disjoint.

The specification A, (B, (X=Y) = C) would cause the following
allocation of storage:

X

B

Y

1

1 *

C

t

where (B=C) and (X=Y) are disjoint subsegments.

That Is, either C or B may be in memory at one time and if B is,

then either X or Y may also be in memory.

-161-

-

The following example illustrates the total elimination of
any tree structure:

I
I
I
[
I

B|

A

c
D

INT

A, (B=C=D=INT)

where the segments B, C, D, and INT are overlayed. The appropriate segment
is loaded when the routine is called.

The following example shows how FORTRAN library routines and
COMMON could be allocated:

A/A ,8, (C - INT)

"cl
X A

J B

INT

where the common area A/ Is associated with the segment A, B and the

subroutines INT and C overlay one another. It Is thfe user's responfebility
to Insure that the segment containing the common area A/ Is In memory
when needed. If the location of the common areas or library routines
are not specified, the linkage editor will allocate them to the first

segment. Note,that an allocated common area, or a sequence of common
areas,must be followed by a "," "routine-name". Tie common area(s).are

not loaded until the associated routine is called.

-162-

■

■

A Unking sequence could be:

SEG A,B
SEG C, (D=E)
SEG F, G, CH-I, K)
SEG L, (M, 0 = P, (Q,R)), s

which will produce the following structure: '*

E B

) I

0

t I

H
F G

|_M|O

B itll
EH

i i i

i i i
i i i
> i i
' i i

• i
r i
i i
i i

ET

where denotes segments and j denotes subsegments.
1 i

Note, that either D or E may be In memory at any one time and that
a subsegment Is constructed. Each segment or subsegment may call any
other segment or subsegment that Is not disjoint from the calling segment.
The linkage editor will check that the modules of a subsegment are in fact
disjoint.

In the above example, no relationship Is Implied between the modules.
Modules may be allocated In any configuration that Is reasonable to the user.

-163- : i

x v l .■»:■

-- ^" ■

I

Using the Linkage Editor

The linkage editor is loaded by typing:

j. RUN UNK

4 file-name

where # Indicates that the linkage editor is waiting for a file
The Indicated file will contain the control statements.

name.

Control Statements

The source language input is discussed In this section. The
control statements may start In any column. Following the mnemonic
operation, and separated by at least one blank, is the specification
portion. Names of modules and files In the specification portion must
begin with a letter and consist of no more than six letters or digits. The
terminal symbols may or may not be surrounded by blanks. Each control
statement Is discussed In this section.

The ENTRY statement (optional):
«

The ENTRY statement has the form:

ENTRY symbol

~iTsTh
is rname of an ^moduie "•••• "*"*-)'**•

a« first inwruotton in the first se9ment is the entry point.

I

-164-
■

The OMIT statement (optional):

The OMIT statement has the form:

OMIT symbol {, symbol} o

where "symbol" specifies those external references that are ilot to be
resolved by the linkage editor.

The SE'J statement:

The SEG statement has the form:

SEG specification

where the "specification" portion is the definition of the segment
and subsegments being defined.

All subsegments must be enclosed in at least one level of
parentheses. Consfder the example:

SEG A, (C=D), B

which represents

C

A B

D

where C and D overlay each other.

-165-
■

■ . !«K«°ui>ÜtciU*t.\

I
I

Initially, segment A Is loaded Into memory. Subsegments C
D, and B are not loaded untU referenced.

Modules may not be referenced more than once in the segment
specification. The example:

SEG A, (C=B, C=D)

Is illegal.. The above example should be specified as:

SEG A, (C=B=D)

which represents

_C
 B_
A_

D

where C, B, and D are overlayed.

The HLE statement :

The HLE statement has the form:

HLE file-name

where "file-name" is the file to contain the load mcxlu ftted K
linkage editor. mou«.^ „„..«.atcd by the

i

, _

-166-

The MAP statement (optional):

The MAP statement has the form:

MAP file-name

where "file-name" indicates the file to contain the storage allocation
map. A memory map will contain:

1) Names and locations of all entry points with
a cross reference,

2) Name , length, and location of all common blocks,

3) Segment or subsegment number for each routine.

The BLOCK-DATA statement (optional):

The BLOCK-DATA statement has the form:

.' BLOCK-DATA file-name

where "file-name" indicates the file containiny the block data object
module

The END statement:

The END statement has the form:

END

and Indicates the end of the linkage editor control statements.

-167-

■

.

t?*f$iivm&h*

Examples

The following Is an example of a linkage editor source file.

8EG A, B# (C=D)
MAP MAP
FILE TEST
OMIT E,F
BLOCK- •DATA BD
END

The commands may be In any order. In the abovj '""
example. the memory allocation map Is filed on MAP. The
load module Is filed on TEST with the external references E and F
unresolved, and the block data object module Is located on file
BD.

For each object module referenced In the specification portion,
the following will occur.

First, the object module Is relocated. This Is not a straightforward
process. There are two types of instructloi) to consider - absolute and
relocatable. For example:

SLIT (1) A; A«0
CLC (2)

STORE (1) $C2;
SLIT (1) B; B« 2
LIT (2) «2;
STORE (1) $02;
JUMP LI; GOTO LI
BSS 1 END B

where SLIT (1) A, SLIT (1) B, and JUMP LI are relocatable instructions
and the othors tre absolute. Also, assume that A is a member of some common

block.and B is a local variable. In such an example, A must be rebound to
the appropriate location in the already allocated common block. In addition,
the local variable B and the label LI are rebound relative to the programs ,
location in memory. The absolute instructions remain unchanged.

-168-

Second , external references are resolved. If the externally

referenced module exists In the same segment, the exfcinal reference Is

bound directly. Otherwise, the externally referenced module is accessed

through a segment table. Consider the example:

A B

X

, T-\
where, if module A calls module B, the external reference can be bound

directly. This is because modules A and B are loaded simultaneously.

If, however, module A calls moduJa C, the external reference Is through
the segment table causing the loading of C arvi making tne return to module A

Impossible. .If module X calls module C, the external reference is through the

segment table causing the loading of C and making the return to moduleX possible,

Third, the actual and formal parameters of external references are

checked for consistent data types, and array declarations are checked for
consistency. Consider the example:

SUBROUTINE A (I, I)

COMMON /TAB/ ARRAY (100)

END

SUBROUTINE B

COMMON /TAB/ ARRAY (10,10)

CALL A (I# R)

END

-169-

I
I

where, I and R imply Integer and real variable respectively. The linkage
editor will notify the user that the data types of the actual arguments

of the call to subroutine A, from subroutine B, are Inconsistent with the
formal parameter expected by subroutine A. In addition, the user will

be notified of the discrepancy In the declaration of ARRAY. The error
diagnostics are discussed In the next section.

-170-

- ■

I
I
I

Diagnostics

The linkage editor detects a variety of errors In the syntax

and semantics of the control statements. These errors are divided

Into two classes — fatal errors and non-fatal errors.

A fatal error Is one from which the linkage editor cannot
proceed. A load module will not be generated In such a case. A
non-fatal error results In a load module being produced; however. It

may contain errors.

are:

Some of the error messages produced by the linkage editor

ILLEGAL MNEMONIC - STATEMENT IGNORED

An Illegal mnemonic operation has been located In

the control statements. Non-fatal error.

INPUT/OUTPUT ERROR

A disk Input/output error has taken place. Fatal

error.

SEGMENT NAME TABLE OVERFLOW

The number of segments or subsegment exceeds the
length of the segment table. Fatal error.

-171-

■ . ^ . ■

ILLEGAL SEGMENT SYNIAX

Indicates an illegal syntax in the specification
portion of a SEG statement. The statement Is ignored.
Non-fatal error.

ILLEGAL SYMBOL

Indicates an illegal module or file name. The
statement is ignored. Non-fatal error.

SYMTAB OVERFLOW

The number of symbol table entries has exceeded the
length of the symbol table. Fatal error.

EQUALS AT FIRST LEVEL

An equals (=) was detected without having first
encountered a left parenthesis. The statement is ignored.
Non-fatal error.

symbo^ IS NOT DISJOINT FROM symbol.

"Symbol^' calls "symbcy and they overlay each other
in the same subsegment. Non-fatal error.

'in-

«-,

* - -' *

Symbol UNDEFINED

Upon completion of the linking, the external reference
"symbol" has not been defined." Non-fatal error.

symbol MULTIPLY DEFINED

The external reference "symbol" is multiply defined in
the specification portion of the SEG statements. The
statement is deleted. Non-fatal error.

MEMORY OVERFLOW

The main storage of the ILLIAC IV has been exceeded.
Fatal error.

INCONSISTENT PARAMETERS FOR symbol
m

The data types between the actual and formal parameter
for the routine "symbol" are inconsistent. Non-fatal error.

INCONSISTENT ARRAY DECLARATION FOR symbol

The declaration for array "symbol" is inconsistent. Men
fatal error.

-173-

, - . .

i' -■-*..

